ccm commited on
Commit
431046d
·
1 Parent(s): 82ab643

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +25 -20
main.py CHANGED
@@ -5,26 +5,31 @@ import matplotlib.pyplot # for colormap
5
  import matplotlib.colors # for color conversion
6
 
7
  # Building the neural network
8
- model1 = keras.models.Sequential()
9
- model1.add(keras.layers.InputLayer(input_shape=(101, 636, 1)))
10
- model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same', strides=1))
11
- model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same'))
12
- model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same', strides=1))
13
- model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same'))
14
- model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same'))
15
- model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same', strides=1))
16
- model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same'))
17
- model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=1))
18
- model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
19
- model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same', strides=1))
20
- model1.add(keras.layers.UpSampling2D((1, 1)))
21
- model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
22
- model1.add(keras.layers.UpSampling2D((1, 1)))
23
- model1.add(keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
24
- model1.add(keras.layers.UpSampling2D((1, 1)))
25
- model1.add(keras.layers.Conv2D(4, (7, 7), activation='tanh', padding='same'))
26
- model1.add(keras.layers.UpSampling2D((1, 1)))
27
- model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
 
 
 
 
 
28
 
29
  #Loading the weights in the architecture (The file should be stored in the same directory as the code)
30
  model1.load_weights('modelV13_500trained_1.h5')
 
5
  import matplotlib.colors # for color conversion
6
 
7
  # Building the neural network
8
+ # model1 = keras.models.Sequential()
9
+ # model1.add(keras.layers.InputLayer(input_shape=(101, 636, 1)))
10
+ # model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same', strides=1))
11
+ # model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same'))
12
+ # model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same', strides=1))
13
+ # model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same'))
14
+ # model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same'))
15
+ # model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same', strides=1))
16
+ # model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same'))
17
+ # model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=1))
18
+ # model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
19
+ # model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same', strides=1))
20
+ # model1.add(keras.layers.UpSampling2D((1, 1)))
21
+ # model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
22
+ # model1.add(keras.layers.UpSampling2D((1, 1)))
23
+ # model1.add(keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
24
+ # model1.add(keras.layers.UpSampling2D((1, 1)))
25
+ # model1.add(keras.layers.Conv2D(4, (7, 7), activation='tanh', padding='same'))
26
+ # model1.add(keras.layers.UpSampling2D((1, 1)))
27
+ # model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
28
+
29
+ from huggingface_hub import from_pretrained_keras
30
+
31
+ model = from_pretrained_keras("cmudrc/microstructure-colorization")
32
+
33
 
34
  #Loading the weights in the architecture (The file should be stored in the same directory as the code)
35
  model1.load_weights('modelV13_500trained_1.h5')