Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -5,26 +5,31 @@ import matplotlib.pyplot # for colormap
|
|
5 |
import matplotlib.colors # for color conversion
|
6 |
|
7 |
# Building the neural network
|
8 |
-
model1 = keras.models.Sequential()
|
9 |
-
model1.add(keras.layers.InputLayer(input_shape=(101, 636, 1)))
|
10 |
-
model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same', strides=1))
|
11 |
-
model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same'))
|
12 |
-
model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same', strides=1))
|
13 |
-
model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same'))
|
14 |
-
model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same'))
|
15 |
-
model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same', strides=1))
|
16 |
-
model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same'))
|
17 |
-
model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=1))
|
18 |
-
model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
|
19 |
-
model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same', strides=1))
|
20 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
21 |
-
model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
|
22 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
23 |
-
model1.add(keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
|
24 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
25 |
-
model1.add(keras.layers.Conv2D(4, (7, 7), activation='tanh', padding='same'))
|
26 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
27 |
-
model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
#Loading the weights in the architecture (The file should be stored in the same directory as the code)
|
30 |
model1.load_weights('modelV13_500trained_1.h5')
|
|
|
5 |
import matplotlib.colors # for color conversion
|
6 |
|
7 |
# Building the neural network
|
8 |
+
# model1 = keras.models.Sequential()
|
9 |
+
# model1.add(keras.layers.InputLayer(input_shape=(101, 636, 1)))
|
10 |
+
# model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same', strides=1))
|
11 |
+
# model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same'))
|
12 |
+
# model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same', strides=1))
|
13 |
+
# model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same'))
|
14 |
+
# model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same'))
|
15 |
+
# model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same', strides=1))
|
16 |
+
# model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same'))
|
17 |
+
# model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=1))
|
18 |
+
# model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
|
19 |
+
# model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same', strides=1))
|
20 |
+
# model1.add(keras.layers.UpSampling2D((1, 1)))
|
21 |
+
# model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
|
22 |
+
# model1.add(keras.layers.UpSampling2D((1, 1)))
|
23 |
+
# model1.add(keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
|
24 |
+
# model1.add(keras.layers.UpSampling2D((1, 1)))
|
25 |
+
# model1.add(keras.layers.Conv2D(4, (7, 7), activation='tanh', padding='same'))
|
26 |
+
# model1.add(keras.layers.UpSampling2D((1, 1)))
|
27 |
+
# model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
|
28 |
+
|
29 |
+
from huggingface_hub import from_pretrained_keras
|
30 |
+
|
31 |
+
model = from_pretrained_keras("cmudrc/microstructure-colorization")
|
32 |
+
|
33 |
|
34 |
#Loading the weights in the architecture (The file should be stored in the same directory as the code)
|
35 |
model1.load_weights('modelV13_500trained_1.h5')
|