File size: 4,040 Bytes
6364b8e
 
063d7d0
436d80d
e2346d7
 
436d80d
 
 
6364b8e
436d80d
759d503
 
53c3b30
e2346d7
063d7d0
e2346d7
 
387ecb3
6364b8e
387ecb3
e2346d7
 
 
6364b8e
e2346d7
436d80d
bec3144
e2346d7
6364b8e
e2346d7
 
 
 
 
 
 
 
 
 
 
 
 
387ecb3
 
 
e2346d7
 
 
387ecb3
e2346d7
 
 
 
387ecb3
e2346d7
 
 
 
 
 
 
 
 
 
 
 
 
387ecb3
e2346d7
387ecb3
e2346d7
 
 
387ecb3
e2346d7
 
 
 
387ecb3
e2346d7
 
 
 
 
 
 
 
 
 
 
 
 
 
387ecb3
e2346d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
from numpy import exp
import pandas as  pd

def softmax(vector):
 e = exp(vector)
 return e / e.sum()

    
models=[
    "Nahrawy/AIorNot",
    "umm-maybe/AI-image-detector",
    "arnolfokam/ai-generated-image-detector",

]
    
def aiornot0(image):    
    labels = ["Real", "AI"]
    mod=models[0]
    feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
    model0 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor0(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model0(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>    
    <br>    
    Probabilites:<br>
    Real: {px[0][0]}<br>
    AI: {px[1][0]}"""
    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    return gr.HTML.update(html_out),results
def aiornot1(image):    
    labels = ["Real", "AI"]
    mod=models[1]
    feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
    model1 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor1(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model1(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>    
    <br>    
    Probabilites:<br>
    Real: {px[0][0]}<br>
    AI: {px[1][0]}"""
    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    return gr.HTML.update(html_out),results    
def aiornot2(image):    
    labels = ["AI", "Real"]
    mod=models[2]
    feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
    model2 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor2(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model2(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>    
    <br>    
    Probabilites:<br>
    Real: {px[1][0]}<br>
    AI: {px[0][0]}"""

    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    return gr.HTML.update(html_out),results
    
with gr.Blocks() as app:
    with gr.Column():
        inp = gr.Pil()
        btn = gr.Button()
    with gr.Group():        
        with gr.Row():
            with gr.Box():
                lab0 = gr.HTML(f"""<b>Testing on Model: {models[0]}</b>""")
                outp0 = gr.HTML("""""")
                n_out0=gr.Label(label="Output")
            with gr.Box():
                lab1 = gr.HTML(f"""<b>Testing on Model: {models[1]}</b>""")
                outp1 = gr.HTML("""""")
                n_out1=gr.Label(label="Output")
            with gr.Box():
                lab2 = gr.HTML(f"""<b>Testing on Model: {models[2]}</b>""")
                outp2 = gr.HTML("""""")            
                n_out2=gr.Label(label="Output")
    btn.click(aiornot0,[inp],[outp0,n_out0])
    btn.click(aiornot1,[inp],[outp1,n_out1])
    btn.click(aiornot2,[inp],[outp2,n_out2])
app.launch(enable_queue=False)