Spaces:
Sleeping
Sleeping
File size: 4,040 Bytes
6364b8e 063d7d0 436d80d e2346d7 436d80d 6364b8e 436d80d 759d503 53c3b30 e2346d7 063d7d0 e2346d7 387ecb3 6364b8e 387ecb3 e2346d7 6364b8e e2346d7 436d80d bec3144 e2346d7 6364b8e e2346d7 387ecb3 e2346d7 387ecb3 e2346d7 387ecb3 e2346d7 387ecb3 e2346d7 387ecb3 e2346d7 387ecb3 e2346d7 387ecb3 e2346d7 387ecb3 e2346d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
from numpy import exp
import pandas as pd
def softmax(vector):
e = exp(vector)
return e / e.sum()
models=[
"Nahrawy/AIorNot",
"umm-maybe/AI-image-detector",
"arnolfokam/ai-generated-image-detector",
]
def aiornot0(image):
labels = ["Real", "AI"]
mod=models[0]
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
model0 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor0(image, return_tensors="pt")
with torch.no_grad():
outputs = model0(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
<br>
Probabilites:<br>
Real: {px[0][0]}<br>
AI: {px[1][0]}"""
results = {}
for idx,result in enumerate(px):
results[labels[idx]] = px[idx][0]
#results[labels['label']] = result['score']
return gr.HTML.update(html_out),results
def aiornot1(image):
labels = ["Real", "AI"]
mod=models[1]
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
model1 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor1(image, return_tensors="pt")
with torch.no_grad():
outputs = model1(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
<br>
Probabilites:<br>
Real: {px[0][0]}<br>
AI: {px[1][0]}"""
results = {}
for idx,result in enumerate(px):
results[labels[idx]] = px[idx][0]
#results[labels['label']] = result['score']
return gr.HTML.update(html_out),results
def aiornot2(image):
labels = ["AI", "Real"]
mod=models[2]
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
model2 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor2(image, return_tensors="pt")
with torch.no_grad():
outputs = model2(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
<br>
Probabilites:<br>
Real: {px[1][0]}<br>
AI: {px[0][0]}"""
results = {}
for idx,result in enumerate(px):
results[labels[idx]] = px[idx][0]
#results[labels['label']] = result['score']
return gr.HTML.update(html_out),results
with gr.Blocks() as app:
with gr.Column():
inp = gr.Pil()
btn = gr.Button()
with gr.Group():
with gr.Row():
with gr.Box():
lab0 = gr.HTML(f"""<b>Testing on Model: {models[0]}</b>""")
outp0 = gr.HTML("""""")
n_out0=gr.Label(label="Output")
with gr.Box():
lab1 = gr.HTML(f"""<b>Testing on Model: {models[1]}</b>""")
outp1 = gr.HTML("""""")
n_out1=gr.Label(label="Output")
with gr.Box():
lab2 = gr.HTML(f"""<b>Testing on Model: {models[2]}</b>""")
outp2 = gr.HTML("""""")
n_out2=gr.Label(label="Output")
btn.click(aiornot0,[inp],[outp0,n_out0])
btn.click(aiornot1,[inp],[outp1,n_out1])
btn.click(aiornot2,[inp],[outp2,n_out2])
app.launch(enable_queue=False) |