File size: 4,588 Bytes
6364b8e
 
063d7d0
436d80d
e2346d7
06b2f35
 
 
 
 
 
e2346d7
436d80d
 
 
6364b8e
436d80d
759d503
 
53c3b30
e2346d7
063d7d0
e2346d7
06b2f35
387ecb3
6364b8e
387ecb3
e2346d7
 
 
6364b8e
e2346d7
436d80d
bec3144
e2346d7
6364b8e
e2346d7
 
 
06b2f35
e2346d7
 
 
 
 
 
 
 
387ecb3
 
 
e2346d7
 
 
387ecb3
e2346d7
 
 
 
387ecb3
e2346d7
 
 
06b2f35
e2346d7
 
 
 
 
 
 
 
387ecb3
e2346d7
387ecb3
e2346d7
 
 
387ecb3
e2346d7
 
 
 
387ecb3
e2346d7
 
 
06b2f35
e2346d7
 
 
 
 
 
 
 
 
06b2f35
 
 
 
 
 
 
 
 
 
 
 
e2346d7
06b2f35
 
 
 
 
 
 
e2346d7
 
 
 
06b2f35
e2346d7
06b2f35
e2346d7
06b2f35
e2346d7
06b2f35
e2346d7
06b2f35
e2346d7
06b2f35
 
 
e2346d7
 
 
06b2f35
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
from numpy import exp
import pandas as  pd
from PIL import Image
import urllib.request 
import uuid
uid=uuid.uuid4()



def softmax(vector):
 e = exp(vector)
 return e / e.sum()

    
models=[
    "Nahrawy/AIorNot",
    "umm-maybe/AI-image-detector",
    "arnolfokam/ai-generated-image-detector",

]
   
def aiornot0(image):    
    labels = ["Real", "AI"]
    mod=models[0]
    feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
    model0 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor0(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model0(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
 
    Probabilites:<br>
    Real: {px[0][0]}<br>
    AI: {px[1][0]}"""
    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    return gr.HTML.update(html_out),results
def aiornot1(image):    
    labels = ["Real", "AI"]
    mod=models[1]
    feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
    model1 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor1(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model1(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
  
    Probabilites:<br>
    Real: {px[0][0]}<br>
    AI: {px[1][0]}"""
    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    return gr.HTML.update(html_out),results    
def aiornot2(image):    
    labels = ["AI", "Real"]
    mod=models[2]
    feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
    model2 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor2(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model2(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
  
    Probabilites:<br>
    Real: {px[1][0]}<br>
    AI: {px[0][0]}"""

    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    return gr.HTML.update(html_out),results

def load_url(url):
    try:
        urllib.request.urlretrieve( 
            f'{url}', 
            f"{uid}tmp_im.png")         
        image = Image.open(f"{uid}tmp_im.png")
        mes = "Image Loaded"
    except Exception as e:
        image=None
        mes=f"Image not Found<br>Error: {e}"
    return image,mes
with gr.Blocks() as app:
    with gr.Row():
        with gr.Column():
            in_url=gr.Textbox(label="Image URL")
            with gr.Row():
                load_btn=gr.Button("Load URL")
                btn = gr.Button("Detect AI")
            mes = gr.HTML("""""")
        inp = gr.Pil()
    with gr.Group():        
        with gr.Row():
            with gr.Box():
                lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
                n_out0=gr.Label(label="Output")
                outp0 = gr.HTML("""""")
            with gr.Box():
                lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
                n_out1=gr.Label(label="Output")
                outp1 = gr.HTML("""""")
            with gr.Box():
                lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
                n_out2=gr.Label(label="Output")
                outp2 = gr.HTML("""""")    
          
    load_btn.click(load_url,in_url,[inp,mes])
    btn.click(aiornot0,[inp],[outp0,n_out0])
    btn.click(aiornot1,[inp],[outp1,n_out1])
    btn.click(aiornot2,[inp],[outp2,n_out2])
    
app.queue(concurrency_count=20).launch()