File size: 1,499 Bytes
dd2b02c
6b73084
 
72390b0
149c35c
 
 
72390b0
149c35c
 
7a73b7f
2624e4a
149c35c
 
72390b0
7d31b0d
04ae345
7d31b0d
d4d3d57
 
04ae345
 
d4d3d57
f9a5e8b
149c35c
f9a5e8b
149c35c
 
f9a5e8b
d4d3d57
 
93555f9
d4d3d57
93555f9
04ae345
 
 
f9a5e8b
d4d3d57
 
df9a8d7
79be1a5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from datasets import load_dataset


MODEL_NAME="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME).to(device)
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) # do i need this? can't remember

#def greet(name):
#    return "Hello " + name + "!!"
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
#iface.launch()
#api = gr.Interface.load("models/carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h")
#iface.launch()

#ds = load_dataset("language-and-voice-lab/samromur_asr",split='train',streaming=True)
#ds = load_dataset("language-and-voice-lab/samromur_asr",split='test')


def show_ex(exnum):
    #return(ds['audio_id'][exnum])
    return(exnum)

def recc(ul):
    
    return(ul,api(ul))
    #wait_for_model set true??
    #anyway in a minute it timed out....

bl = gr.Blocks()
with bl:
    text_input = gr.Textbox()
    text_output = gr.Textbox()
    text_button = gr.Button("Run")
    #text_button.click(show_ex, inputs=text_input, outputs=text_output)

    audio_file = gr.Audio(type="filepath")
    text_button.click(recc, inputs=audio_file, outputs=text_output)


bl.launch()

#https://mercury-docs.readthedocs.io/en/latest/deploy/hugging-face-spaces/
#https://huggingface.co/spaces/pplonski/deploy-mercury
#https://discuss.huggingface.co/t/deploy-interactive-jupyter-notebook-on-spaces-with-mercury/17000
#https://huggingface.co/docs/transformers/notebooks