File size: 1,499 Bytes
dd2b02c 6b73084 72390b0 149c35c 72390b0 149c35c 7a73b7f 2624e4a 149c35c 72390b0 7d31b0d 04ae345 7d31b0d d4d3d57 04ae345 d4d3d57 f9a5e8b 149c35c f9a5e8b 149c35c f9a5e8b d4d3d57 93555f9 d4d3d57 93555f9 04ae345 f9a5e8b d4d3d57 df9a8d7 79be1a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from datasets import load_dataset
MODEL_NAME="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME).to(device)
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) # do i need this? can't remember
#def greet(name):
# return "Hello " + name + "!!"
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
#iface.launch()
#api = gr.Interface.load("models/carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h")
#iface.launch()
#ds = load_dataset("language-and-voice-lab/samromur_asr",split='train',streaming=True)
#ds = load_dataset("language-and-voice-lab/samromur_asr",split='test')
def show_ex(exnum):
#return(ds['audio_id'][exnum])
return(exnum)
def recc(ul):
return(ul,api(ul))
#wait_for_model set true??
#anyway in a minute it timed out....
bl = gr.Blocks()
with bl:
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("Run")
#text_button.click(show_ex, inputs=text_input, outputs=text_output)
audio_file = gr.Audio(type="filepath")
text_button.click(recc, inputs=audio_file, outputs=text_output)
bl.launch()
#https://mercury-docs.readthedocs.io/en/latest/deploy/hugging-face-spaces/
#https://huggingface.co/spaces/pplonski/deploy-mercury
#https://discuss.huggingface.co/t/deploy-interactive-jupyter-notebook-on-spaces-with-mercury/17000
#https://huggingface.co/docs/transformers/notebooks
|