length-contrast-data-isl / vowel_length.py
catiR
densities
ecd5f69
raw
history blame
7.39 kB
import os, json
import numpy as np
from collections import defaultdict
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
#from scipy.spatial import KDTree
#from sklearn.neighbors import NearestNeighbors
# make subsets of words for convenience
def make_sets(db,shorts,longs):
def _wspec(wd,l1,l2):
if (wd in l1) and (wd in l2):
return(wd,wd)
elif wd in l1:
return(f'{wd} [L1]',wd)
elif wd in l2:
return(f'{wd} [L2]',wd)
else:
return ('','')
def _ksrt(k):
if ' ' in k:
return((k[0],1/len(k)))
else:
return (k.replace(':',''),k[-1] )
words = set([(t['word'],t['speaker_lang']) for t in db])
l1 = [w for w,l in words if l == 'L1']
l2 = [w for w,l in words if l == 'L2']
words = set([w for w,l in words])
wdict = defaultdict(list)
for w in words:
if 'agg' in w:
wdict['AG:'].append(_wspec(w,l1,l2))
elif 'all' in w:
wdict['AL:'].append(_wspec(w,l1,l2))
elif 'egg' in w:
wdict['EG:'].append(_wspec(w,l1,l2))
elif 'eki' in w:
wdict['E:G'].append(_wspec(w,l1,l2))
elif 'aki' in w:
wdict['A:G'].append(_wspec(w,l1,l2))
elif 'ala' in w:
wdict['A:L'].append(_wspec(w,l1,l2))
elif w in shorts:
wdict['OTHER - SHORT'].append(_wspec(w,l1,l2))
elif w in longs:
wdict['OTHER - LONG'].append(_wspec(w,l1,l2))
else:
print(f'something should not have happened: {w}')
sets = [(k, sorted(wdict[k])) for k in sorted(list(wdict.keys()),key = _ksrt)]
return sets
# compile data for a token record
def get_tk_data(tk,shorts,longs):
# merge intervals
# from list of phones
# to word part
def _merge_intervals(plist):
if not plist:
return np.nan
tot_start, tot_end = plist[0]['start'],plist[-1]['end']
tot_dur = tot_end-tot_start
return tot_dur
tkdat = {}
tkdat['word'] = tk['word']
tkdat['speaker_lang'] = tk['speaker_lang']
tkdat['n_pre_phone'] = len(tk['gold_annotation']['prevowel'])
tkdat['n_post_phone'] = len(tk['gold_annotation']['postvowel'])
if tk['word'] in longs:
tkdat['vlen'] = 1
else:
assert tk['word'] in shorts
tkdat['vlen'] = 0
for s in ['gold','mfa']:
tkdat[f'{s}_pre_dur'] = _merge_intervals(tk[f'{s}_annotation']['prevowel'])
tkdat[f'{s}_v_dur'] = _merge_intervals(tk[f'{s}_annotation']['vowel'])
tkdat[f'{s}_post_dur'] = _merge_intervals(tk[f'{s}_annotation']['postvowel'])
tkdat[f'{s}_word_dur'] = tk[f'{s}_annotation']['target_word_end'] -\
tk[f'{s}_annotation']['target_word_start']
return tkdat
# code short vowels 0, long 1
def prep_dat(d):
df = d.copy()
for s in ['gold','mfa']:
df[f'{s}_ratio'] = df[f'{s}_v_dur'] / (df[f'{s}_v_dur']+df[f'{s}_post_dur'])
df[f'{s}_pre_dur'] = df[f'{s}_pre_dur'].fillna(0) # set absent onsets dur zero
df = df.convert_dtypes()
return df
def setup(annot_json):
longs = set(['aki', 'ala', 'baki', 'bera', 'betri', 'blaki', 'breki',
'brosir', 'dala', 'dreki', 'dvala', 'fala', 'fara', 'færa',
'færi', 'gala', 'hausinn', 'jónas', 'katrín', 'kisa', 'koma',
'leki', 'leyfa', 'maki', 'muna', 'nema', 'raki', 'sama',
'speki', 'svala', 'sækja', 'sömu', 'taki', 'tala', 'tvisvar',
'vala', 'veki', 'vinur', 'ása', 'þaki'])
shorts = set(['aggi', 'baggi', 'balla', 'beggi', 'eggi', 'farðu', 'fossinn',
'færði', 'galla', 'hausnum', 'herra', 'jónsson', 'kaggi', 'kalla',
'lalla', 'leggi', 'leyfðu', 'maggi', 'malla', 'mamma', 'missa',
'mömmu', 'nærri', 'palla', 'raggi', 'skeggi', 'snemma', 'sunna',
'tommi', 'veggi','vinnur', 'ásta'])
# very basic remove about 5 outliers > 350ms
cut=0.35
with open(annot_json, 'r') as handle:
db = json.load(handle)
sets = make_sets(db,shorts,longs)
db = [get_tk_data(tk,shorts,longs) for tk in db]
db = [t for t in db if ((t['gold_v_dur'] <=cut) and (t['gold_post_dur'] <=cut))]
dat = pd.DataFrame.from_records(db)
dat = prep_dat(dat)
return sets,dat
def kldiv(s1,s2):
_log = lambda x: np.log2(x) if x != 0 else 0
_log = np.vectorize(_log)
n, m = len(s1), len(s2)
d = s1.shape[1]
assert d == 2 == s2.shape[1]
k = 1
while True:
knn1 = NearestNeighbors(n_neighbors = k+1).fit(s1)
nnDist1 = knn1.kneighbors(s1)[0][:, k]
if not nnDist1.all():
k += 1
else:
break
knn2 = NearestNeighbors(n_neighbors = k).fit(s2)
nnDist2 = knn2.kneighbors(s1)[0][:, k-1]
kl = (d/n) * sum(_log(nnDist2/nnDist1)) + _log((m/(n-1)))
return kl
def vgraph(dat1,l1,src1,lab1,dat2,l2,src2,lab2):
def _gprep(df,l,s):
# color by length + speaker group
ccs = { "lAll" : (0.0, 0.749, 1.0),
"lL1" : (0.122, 0.467, 0.706),
"lL2" : (0.282, 0.82, 0.8),
"sAll" :(0.89, 0.467, 0.761),
"sL1" : (0.863, 0.078, 0.235),
"sL2" : (0.859, 0.439, 0.576),
"xAll" : (0.988, 0.69, 0.004),
"xL1" : (0.984, 0.49, 0.027),
"xL2" : (0.969, 0.835, 0.376)}
vdurs = np.array(df[f'{s}_v_dur'])*1000
cdurs = np.array(df[f'{s}_post_dur'])*1000
rto = np.mean(df[f'{s}_ratio'])
if sum(df['vlen']) == 0:
vl = 's'
elif sum(df['vlen']) == df.shape[0]:
vl = 'l'
else:
vl = 'x'
cc = ccs[f'{vl}{l}']
return vdurs, cdurs, rto, cc
plt.close()
vd1,cd1,ra1,cl1 = _gprep(dat1,l1,src1)
lab1 += f'\n Ratio: {ra1:.3f}'
if src1 == 'gold':
mk1 = '^'
else:
mk1 = '<'
fig, ax = plt.subplots(figsize=(9,7))
#ax.set_xlim(0.0, 350)
#ax.set_ylim(0.0, 350)
ax.scatter(vd1,cd1,marker = mk1, label = lab1,
c = [cl1 + (.7,)], edgecolors = [cl1] )
marginals = [(vd1, 'x', l1, cl1),
(cd1, 'y', l1, cl1)]
#kld = None
if lab2:
vd2,cd2,ra2,cl2 = _gprep(dat2,l2,src2)
lab2 += f'\n Ratio: {ra2:.3f}'
if src2 == 'gold':
mk2 = 'v'
else:
mk2 = '>'
ax.scatter(vd2,cd2, marker = mk2, label = lab2,
c = [cl2 + (.05,)], edgecolors = [cl2] )
#s1 = np.transpose(np.array([vd1,cd1]))
#s2 = np.transpose(np.array([vd2,cd2]))
#klda = kldiv(s1,s2)
#if klda:
# kldb = kldiv(s2,s1)
# kldsym = np.mean([klda,kldb])
# if not np.isnan(kldsym):
# ax.scatter([-300],[-300],c = 'white',label = f'\nKLDiv: {kldsym:.2f}')
marginals += [(vd2, 'x', l2, cl2),
(cd2, 'y', l2, cl2)]
#fig.legend(loc=8,ncols=2)
leg = fig.legend(loc=7,frameon=False)
for t in leg.get_texts():
t.set_verticalalignment("center_baseline")
ax.axline((0,0),slope=1,color="darkgray")
marginals = [m for m in marginals if len(m[0])>9]
lsts = {'L1': 'solid' , 'L2': 'dashed' , 'All': 'dashdot'}
for values, axt, lng, lcl in marginals:
kde = gaussian_kde(values, bw_method='scott')
pts = np.linspace(np.min(values), np.max(values))
dens = kde.pdf(pts)
scf=2500
lst = lsts[lng]
#l2dat = ax.plot(pts, [350-(scf*i) for i in dens], linestyle=lst, color = lcl)
l2dat = ax.plot(pts, [350+(scf*i) for i in dens], linestyle=lst, color = lcl, clip_on=False)
if axt == 'y':
for l2d in l2dat:
xln = l2d.get_xdata()
yln = l2d.get_ydata()
l2d.set_xdata(yln)
l2d.set_ydata(xln)
fig.canvas.draw()
#ax.draw_artist(l2d)
ax.set_xlim(0.0, 350)
ax.set_ylim(0.0, 350)
ax.set_title("Stressed vowel & following consonant(s) duration" , fontsize=16, y=-.155)
ax.set_xlabel("Vowel duration (ms)")
ax.set_ylabel("Consonant duration (ms)")
fig.tight_layout()
fig.subplots_adjust(bottom=0.13)
fig.subplots_adjust(right=0.72)
#plt.xticks(ticks=[50,100,150,200,250,300],labels=[])
#plt.yticks(ticks=[100,200,300],labels=[])
return fig