Spaces:
Runtime error
Runtime error
快速上手 | |
======== | |
本节中,我们将演示如何使用 XTuner 微调模型,帮助您快速上手 XTuner。 | |
在成功安装 XTuner | |
后,便可以开始进行模型的微调。在本节中,我们将演示如何使用 XTuner,应用 | |
QLoRA 算法在 Colorist 数据集上微调 InternLM2-Chat-7B。 | |
Colorist 数据集(\ `HuggingFace | |
链接 <https://huggingface.co/datasets/burkelibbey/colors>`__\ ;\ `ModelScope | |
链接 <https://www.modelscope.cn/datasets/fanqiNO1/colors/summary>`__\ )是一个根据颜色描述提供颜色选择与建议的数据集,经过该数据集微调的模型可以做到根据用户对于颜色的描述,从而给出16进制下的颜色编码,如用户输入“宁静而又相当明亮的浅天蓝色,介于天蓝色和婴儿蓝之间,因其亮度而带有一丝轻微的荧光感。”,模型输出 | |
|image1|\ ,该颜色很符合用户的描述。以下是该数据集的几条样例数据: | |
+-----------------------+-----------------------+-------------------+ | |
| 英文描述 | 中文描述 | 颜色 | | |
+=======================+=======================+===================+ | |
| Light Sky Blue: A | 浅天蓝色 | #66ccff: |image8| | | |
| calming, fairly | :一种介于天蓝和婴儿 | | | |
| bright color that | 蓝之间的平和、相当明 | | | |
| falls between sky | 亮的颜色,由于明亮而 | | | |
| blue and baby blue, | 带有一丝轻微的荧光。 | | | |
| with a hint of slight | | | | |
| fluorescence due to | | | | |
| its brightness. | | | | |
+-----------------------+-----------------------+-------------------+ | |
| Bright red: This is a | 鲜红色: | #ee0000: |image9| | | |
| very vibrant, | 这是一种非常鲜 | | | |
| saturated and vivid | 艳、饱和、生动的红色 | | | |
| shade of red, | ,类似成熟苹果或新鲜 | | | |
| resembling the color | 血液的颜色。它是标准 | | | |
| of ripe apples or | RGB | | | |
| fresh blood. It is as | 调色板上的红色,不含 | | | |
| red as you can get on | 任何蓝色或绿色元素。 | | | |
| a standard RGB color | | | | |
| palette, with no | | | | |
| elements of either | | | | |
| blue or green. | | | | |
+-----------------------+-----------------------+-------------------+ | |
| Bright Turquoise: | 明亮的绿松石 | #00ffcc: | | |
| This color mixes the | 色:这种颜色融合了鲜 | |image10| | | |
| freshness of bright | 绿色的清新和淡蓝色的 | | | |
| green with the | 宁静,呈现出一种充满 | | | |
| tranquility of light | 活力的绿松石色调。它 | | | |
| blue, leading to a | 让人联想到热带水域。 | | | |
| vibrant shade of | | | | |
| turquoise. It is | | | | |
| reminiscent of | | | | |
| tropical waters. | | | | |
+-----------------------+-----------------------+-------------------+ | |
准备模型权重 | |
------------ | |
在微调模型前,首先要准备待微调模型的权重。 | |
.. _从-huggingface-下载-1: | |
从 HuggingFace 下载 | |
~~~~~~~~~~~~~~~~~~~ | |
.. code:: bash | |
pip install -U huggingface_hub | |
# 拉取模型至 Shanghai_AI_Laboratory/internlm2-chat-7b | |
huggingface-cli download internlm/internlm2-chat-7b \ | |
--local-dir Shanghai_AI_Laboratory/internlm2-chat-7b \ | |
--local-dir-use-symlinks False \ | |
--resume-download | |
.. _从-modelscope-下载-1: | |
从 ModelScope 下载 | |
~~~~~~~~~~~~~~~~~~ | |
由于从 HuggingFace | |
拉取模型权重,可能存在下载过程不稳定、下载速度过慢等问题。因此在下载过程遇到网络问题时,我们则可以选择从 | |
ModelScope 下载 InternLM2-Chat-7B 的权重。 | |
.. code:: bash | |
pip install -U modelscope | |
# 拉取模型至当前目录 | |
python -c "from modelscope import snapshot_download; snapshot_download('Shanghai_AI_Laboratory/internlm2-chat-7b', cache_dir='.')" | |
在完成下载后,便可以开始准备微调数据集了。 | |
此处附上 HuggingFace 链接与 ModelScope 链接: | |
- HuggingFace | |
链接位于:\ https://huggingface.co/internlm/internlm2-chat-7b | |
- ModelScope | |
链接位于:\ https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-7b/summary | |
准备微调数据集 | |
-------------- | |
接下来,我们需要准备微调数据集。 | |
.. _从-huggingface-下载-2: | |
从 HuggingFace 下载 | |
~~~~~~~~~~~~~~~~~~~ | |
.. code:: bash | |
git clone https://huggingface.co/datasets/burkelibbey/colors | |
.. _从-modelscope-下载-2: | |
从 ModelScope 下载 | |
~~~~~~~~~~~~~~~~~~ | |
由于相同的问题,因此我们可以选择从 ModelScope 下载所需要的微调数据集。 | |
.. code:: bash | |
git clone https://www.modelscope.cn/datasets/fanqiNO1/colors.git | |
此处附上 HuggingFace 链接与 ModelScope 链接: | |
- HuggingFace | |
链接位于:\ https://huggingface.co/datasets/burkelibbey/colors | |
- ModelScope 链接位于:\ https://modelscope.cn/datasets/fanqiNO1/colors | |
准备配置文件 | |
------------ | |
XTuner 提供了多个开箱即用的配置文件,可以通过 ``xtuner list-cfg`` | |
查看。我们执行如下指令,以复制一个配置文件到当前目录。 | |
.. code:: bash | |
xtuner copy-cfg internlm2_7b_qlora_colorist_e5 . | |
配置文件名的解释: | |
======== ============================== | |
配置文件 internlm2_7b_qlora_colorist_e5 | |
======== ============================== | |
模型名 internlm2_7b | |
使用算法 qlora | |
数据集 colorist | |
训练时长 5 epochs | |
======== ============================== | |
此时该目录文件结构应如下所示: | |
.. code:: bash | |
. | |
├── colors | |
│ ├── colors.json | |
│ ├── dataset_infos.json | |
│ ├── README.md | |
│ └── train.jsonl | |
├── internlm2_7b_qlora_colorist_e5_copy.py | |
└── Shanghai_AI_Laboratory | |
└── internlm2-chat-7b | |
├── config.json | |
├── configuration_internlm2.py | |
├── configuration.json | |
├── generation_config.json | |
├── modeling_internlm2.py | |
├── pytorch_model-00001-of-00008.bin | |
├── pytorch_model-00002-of-00008.bin | |
├── pytorch_model-00003-of-00008.bin | |
├── pytorch_model-00004-of-00008.bin | |
├── pytorch_model-00005-of-00008.bin | |
├── pytorch_model-00006-of-00008.bin | |
├── pytorch_model-00007-of-00008.bin | |
├── pytorch_model-00008-of-00008.bin | |
├── pytorch_model.bin.index.json | |
├── README.md | |
├── special_tokens_map.json | |
├── tokenization_internlm2_fast.py | |
├── tokenization_internlm2.py | |
├── tokenizer_config.json | |
└── tokenizer.model | |
修改配置文件 | |
------------ | |
| 在这一步中,我们需要修改待微调模型路径和数据路径为本地路径,并且修改数据集加载方式。 | |
| 此外,由于复制得到的配置文件是基于基座(Base)模型的,所以还需要修改 | |
``prompt_template`` 以适配对话(Chat)模型。 | |
.. code:: diff | |
####################################################################### | |
# PART 1 Settings # | |
####################################################################### | |
# Model | |
- pretrained_model_name_or_path = 'internlm/internlm2-7b' | |
+ pretrained_model_name_or_path = './Shanghai_AI_Laboratory/internlm2-chat-7b' | |
# Data | |
- data_path = 'burkelibbey/colors' | |
+ data_path = './colors/train.jsonl' | |
- prompt_template = PROMPT_TEMPLATE.default | |
+ prompt_template = PROMPT_TEMPLATE.internlm2_chat | |
... | |
####################################################################### | |
# PART 3 Dataset & Dataloader # | |
####################################################################### | |
train_dataset = dict( | |
type=process_hf_dataset, | |
- dataset=dict(type=load_dataset, path=data_path), | |
+ dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)), | |
tokenizer=tokenizer, | |
max_length=max_length, | |
dataset_map_fn=colors_map_fn, | |
template_map_fn=dict( | |
type=template_map_fn_factory, template=prompt_template), | |
remove_unused_columns=True, | |
shuffle_before_pack=True, | |
pack_to_max_length=pack_to_max_length) | |
因此在这一步中,修改了 | |
``pretrained_model_name_or_path``\ 、\ ``data_path``\ 、\ ``prompt_template`` | |
以及 ``train_dataset`` 中的 ``dataset`` 字段。 | |
启动微调 | |
-------- | |
在完成上述操作后,便可以使用下面的指令启动微调任务了。 | |
.. code:: bash | |
# 单机单卡 | |
xtuner train ./internlm2_7b_qlora_colorist_e5_copy.py | |
# 单机多卡 | |
NPROC_PER_NODE=${GPU_NUM} xtuner train ./internlm2_7b_qlora_colorist_e5_copy.py | |
# slurm 情况 | |
srun ${SRUN_ARGS} xtuner train ./internlm2_7b_qlora_colorist_e5_copy.py --launcher slurm | |
正确输出的训练日志应类似如下所示: | |
.. code:: text | |
01/29 21:35:34 - mmengine - INFO - Iter(train) [ 10/720] lr: 9.0001e-05 eta: 0:31:46 time: 2.6851 data_time: 0.0077 memory: 12762 loss: 2.6900 | |
01/29 21:36:02 - mmengine - INFO - Iter(train) [ 20/720] lr: 1.9000e-04 eta: 0:32:01 time: 2.8037 data_time: 0.0071 memory: 13969 loss: 2.6049 grad_norm: 0.9361 | |
01/29 21:36:29 - mmengine - INFO - Iter(train) [ 30/720] lr: 1.9994e-04 eta: 0:31:24 time: 2.7031 data_time: 0.0070 memory: 13969 loss: 2.5795 grad_norm: 0.9361 | |
01/29 21:36:57 - mmengine - INFO - Iter(train) [ 40/720] lr: 1.9969e-04 eta: 0:30:55 time: 2.7247 data_time: 0.0069 memory: 13969 loss: 2.3352 grad_norm: 0.8482 | |
01/29 21:37:24 - mmengine - INFO - Iter(train) [ 50/720] lr: 1.9925e-04 eta: 0:30:28 time: 2.7286 data_time: 0.0068 memory: 13969 loss: 2.2816 grad_norm: 0.8184 | |
01/29 21:37:51 - mmengine - INFO - Iter(train) [ 60/720] lr: 1.9863e-04 eta: 0:29:58 time: 2.7048 data_time: 0.0069 memory: 13969 loss: 2.2040 grad_norm: 0.8184 | |
01/29 21:38:18 - mmengine - INFO - Iter(train) [ 70/720] lr: 1.9781e-04 eta: 0:29:31 time: 2.7302 data_time: 0.0068 memory: 13969 loss: 2.1912 grad_norm: 0.8460 | |
01/29 21:38:46 - mmengine - INFO - Iter(train) [ 80/720] lr: 1.9681e-04 eta: 0:29:05 time: 2.7338 data_time: 0.0069 memory: 13969 loss: 2.1512 grad_norm: 0.8686 | |
01/29 21:39:13 - mmengine - INFO - Iter(train) [ 90/720] lr: 1.9563e-04 eta: 0:28:36 time: 2.7047 data_time: 0.0068 memory: 13969 loss: 2.0653 grad_norm: 0.8686 | |
01/29 21:39:40 - mmengine - INFO - Iter(train) [100/720] lr: 1.9426e-04 eta: 0:28:09 time: 2.7383 data_time: 0.0070 memory: 13969 loss: 1.9819 grad_norm: 0.9127 | |
在训练开始前,可以看到模型的输出如下所示: | |
.. code:: text | |
2024/01/29 21:34:58 - mmengine - INFO - before_train in EvaluateChatHook. | |
2024/01/29 21:35:03 - mmengine - INFO - Sample output: | |
<s><|im_start|>system | |
You are a professional color designer. Please provide the corresponding colors based on the description of Human. | |
<|im_end|> | |
<|im_start|>user | |
请给我一个像天空一样清澈透明的蓝色。<|im_end|> | |
<|im_start|>assistant | |
为了匹配您所描述的“像天空一样清澈透明的蓝色”,我建议您选择一种名为“天蓝”(Cerulean)的颜色。这种颜色通常被用来代表天空、海洋和清澈的水域,它具有明亮 | |
2024/01/29 21:35:07 - mmengine - INFO - Sample output: | |
<s><|im_start|>system | |
You are a professional color designer. Please provide the corresponding colors based on the description of Human. | |
<|im_end|> | |
<|im_start|>user | |
Please give me a clear blue like the sky.<|im_end|> | |
<|im_start|>assistant | |
The color you're describing is a clear, bright blue that resembles the color of the sky on a sunny day. This color is often referred to as "sky blue" or "cerulean blue." Here are some specific color codes and names that | |
而在训练完全完成后,可以观察到模型的输出如下所示: | |
.. code:: text | |
2024/01/29 22:08:07 - mmengine - INFO - Sample output: | |
<s><|im_start|>system | |
You are a professional color designer. Please provide the corresponding colors based on the description of Human. | |
<|im_end|> | |
<|im_start|>user | |
请给我一个像天空一样清澈透明的蓝色。<|im_end|> | |
<|im_start|>assistant | |
#1099ee<|im_end|> | |
2024/01/29 22:08:08 - mmengine - INFO - Sample output: | |
<s><|im_start|>system | |
You are a professional color designer. Please provide the corresponding colors based on the description of Human. | |
<|im_end|> | |
<|im_start|>user | |
Please give me a clear blue like the sky.<|im_end|> | |
<|im_start|>assistant | |
#0066dd<|im_end|> | |
模型输出的颜色如下所示: | |
- 天空一样清澈透明的蓝色:\ |image11| | |
- A clear blue like the sky: |image12| | |
不难发现,模型在经过训练后,其输出已经完全与数据集内容所对齐了。 | |
.. _模型转换--lora-合并: | |
模型转换 + LoRA 合并 | |
-------------------- | |
在训练完成后,我们会得到几个 ``.pth`` 文件,这些文件存储了 QLoRA | |
算法训练过程所更新的参数,而\ **不是**\ 模型的全部参数。因此我们需要将这些 | |
``.pth`` 文件转换为 HuggingFace 格式,并合并入原始的语言模型权重中。 | |
模型转换 | |
~~~~~~~~ | |
XTuner 已经集成好了将模型转换为 HuggingFace 格式的工具,我们只需要执行 | |
.. code:: bash | |
# 创建存放 hf 格式参数的目录 | |
mkdir work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720_hf | |
# 转换格式 | |
xtuner convert pth_to_hf internlm2_7b_qlora_colorist_e5_copy.py \ | |
work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720.pth \ | |
work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720_hf | |
该条转换命令将会根据配置文件 ``internlm2_7b_qlora_colorist_e5_copy.py`` | |
的内容,将 | |
``work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720.pth`` 转换为 hf | |
格式,并保存在 | |
``work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720_hf`` 位置。 | |
LoRA 合并 | |
~~~~~~~~~ | |
XTuner 也已经集成好了合并 LoRA 权重的工具,我们只需执行如下指令: | |
.. code:: bash | |
# 创建存放合并后的参数的目录 | |
mkdir work_dirs/internlm2_7b_qlora_colorist_e5_copy/merged | |
# 合并参数 | |
xtuner convert merge Shanghai_AI_Laboratory/internlm2-chat-7b \ | |
work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720_hf \ | |
work_dirs/internlm2_7b_qlora_colorist_e5_copy/merged \ | |
--max-shard-size 2GB | |
与转换命令类似,该条合并参数命令会读取原始参数路径 | |
``Shanghai_AI_Laboratory/internlm2-chat-7b`` 以及转换为 hf | |
格式的部分参数路径 | |
``work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720_hf``\ ,将两部分参数合并后保存于 | |
``work_dirs/internlm2_7b_qlora_colorist_e5_copy/merged``\ ,其中每个参数切片的最大文件大小为 | |
2GB。 | |
与模型对话 | |
---------- | |
在合并权重后,为了更好地体会到模型的能力,XTuner | |
也集成了与模型对话的工具。通过如下命令,便可以启动一个与模型对话的简易 | |
Demo。 | |
.. code:: bash | |
xtuner chat work_dirs/internlm2_7b_qlora_colorist_e5_copy/merged \ | |
--prompt-template internlm2_chat \ | |
--system-template colorist | |
当然,我们也可以选择不合并权重,而是直接与 LLM + LoRA Adapter | |
进行对话,我们只需要执行如下指令: | |
.. code:: bash | |
xtuner chat Shanghai_AI_Laboratory/internlm2-chat-7b | |
--adapter work_dirs/internlm2_7b_qlora_colorist_e5_copy/iter_720_hf \ | |
--prompt-template internlm2_chat \ | |
--system-template colorist | |
其中 ``work_dirs/internlm2_7b_qlora_colorist_e5_copy/merged`` | |
是合并后的权重路径,\ ``--prompt-template internlm2_chat`` | |
指定了对话模板为 InternLM2-Chat,\ ``--system-template colorist`` | |
则是指定了与模型对话时的 System Prompt 为 Colorist 数据集所要求的模板。 | |
以下是一个例子: | |
.. code:: text | |
double enter to end input (EXIT: exit chat, RESET: reset history) >>> 宁静而又相当明亮的浅天蓝色,介于天蓝色和婴儿蓝之间,因其亮度而带有一丝轻微的荧光感。 | |
#66ccff<|im_end|> | |
其颜色如下所示: | |
宁静而又相当明亮的浅天蓝色,介于天蓝色和婴儿蓝之间,因其亮度而带有一丝轻微的荧光感。:\ |image13| | |
.. |image1| image:: https://img.shields.io/badge/%2366ccff-66CCFF | |
.. |image2| image:: https://img.shields.io/badge/%2366ccff-66CCFF | |
.. |image3| image:: https://img.shields.io/badge/%23ee0000-EE0000 | |
.. |image4| image:: https://img.shields.io/badge/%2300ffcc-00FFCC | |
.. |image5| image:: https://img.shields.io/badge/%2366ccff-66CCFF | |
.. |image6| image:: https://img.shields.io/badge/%23ee0000-EE0000 | |
.. |image7| image:: https://img.shields.io/badge/%2300ffcc-00FFCC | |
.. |image8| image:: https://img.shields.io/badge/%2366ccff-66CCFF | |
.. |image9| image:: https://img.shields.io/badge/%23ee0000-EE0000 | |
.. |image10| image:: https://img.shields.io/badge/%2300ffcc-00FFCC | |
.. |image11| image:: https://img.shields.io/badge/天空一样清澈透明的蓝色-1099EE | |
.. |image12| image:: https://img.shields.io/badge/A_clear_blue_like_the_sky-0066DD | |
.. |image13| image:: https://img.shields.io/badge/宁静而又相当明亮的浅天蓝色,介于天蓝色和婴儿蓝之间,因其亮度而带有一丝轻微的荧光感。-66CCFF | |