Spaces:
Runtime error
Runtime error
速度基准 | |
======== | |
我们在训练速度方面与 | |
`LLaMA-Factory <https://github.com/hiyouga/LLaMA-Factory>`__ | |
进行了对比。对比所使用的 LLaMA-Factory commit id 为 | |
`8e04794 <https://github.com/hiyouga/LLaMA-Factory/tree/8e04794b2da067a4123b9d7091a54c5647f44244>`__\ 。使用 | |
`Alpaca <https://huggingface.co/datasets/tatsu-lab/alpaca>`__ | |
作为训练数据集测试速度。 | |
硬件 | |
---- | |
- NVIDIA A100-SXM4-80GB GPUs | |
- Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz | |
软件环境 | |
-------- | |
- Python 3.10 | |
- PyTorch 1.13 | |
- CUDA 11.7 | |
- CUDNN 8.5 | |
- NCCL 2.14.3 | |
速度 | |
---- | |
|image1| | |
|image2| | |
|image3| | |
.. tip:: | |
TGS 全称是 Tokens per GPU per Second,每张 GPU 每秒训练的 Token 数 | |
.. raw:: html | |
<html xmlns="http://www.w3.org/1999/xhtml"><head></head><body><div align="center"></div></body></html> | |
.. list-table:: | |
:widths: 30 15 20 20 20 50 | |
:header-rows: 1 | |
* - 模型 | |
- GPUs | |
- 序列长度 | |
- TGS | |
- TFLOPs | |
- Config | |
* - Llama2-7B | |
- 8 | |
- 8k | |
- 3028.3 | |
- 185.3 | |
- `llama2_70b_full_alpaca_enzh_8k_sp1.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_7b/llama2_7b_full_alpaca_enzh_8k_sp1.py>`_ | |
* - Llama2-7B | |
- 8 | |
- 32k | |
- 2234.2 | |
- 193.0 | |
- `llama2_7b_full_alpaca_enzh_32k_sp1.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_7b/llama2_7b_full_alpaca_enzh_32k_sp1.py>`_ | |
* - Llama2-7B | |
- 8 | |
- 128k | |
- 948.6 | |
- 180.3 | |
- `llama2_7b_full_alpaca_enzh_128k_sp8.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_7b/llama2_7b_full_alpaca_enzh_128k_sp8.py>`_ | |
* - Llama2-7B | |
- 8 | |
- 256k | |
- 540.1 | |
- 176.9 | |
- `llama2_7b_full_alpaca_enzh_256k_sp8.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_7b/llama2_7b_full_alpaca_enzh_256k_sp8.py>`_ | |
* - Llama2-7B | |
- 32 | |
- 1M | |
- 133.6 | |
- 153.9 | |
- `llama2_7b_full_alpaca_enzh_1M_sp16.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_7b/llama2_7b_full_alpaca_enzh_1M_sp16.py>`_ | |
.. list-table:: | |
:widths: 30 15 20 20 20 50 | |
:header-rows: 1 | |
* - 模型 | |
- GPUs | |
- 序列长度 | |
- TGS | |
- TFLOPs | |
- Config | |
* - Yi-34B-200K | |
- 32 | |
- 8k | |
- 485.1 | |
- 165.6 | |
- `yi_34b_200k_full_alpaca_enzh_8k_sp1.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/yi_34b/yi_34b_200k_full_alpaca_enzh_8k_sp1.py>`_ | |
* - Yi-34B-200K | |
- 32 | |
- 32k | |
- 491.5 | |
- 209.1 | |
- `yi_34b_200k_full_alpaca_enzh_32k_sp2.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/yi_34b/yi_34b_200k_full_alpaca_enzh_32k_sp2.py>`_ | |
* - Yi-34B-200K | |
- 32 | |
- 128k | |
- 251.1 | |
- 191.8 | |
- `yi_34b_200k_full_alpaca_enzh_128k_sp8.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/yi_34b/yi_34b_200k_full_alpaca_enzh_128k_sp8.py>`_ | |
* - Yi-34B-200K | |
- 32 | |
- 256k | |
- 119.7 | |
- 145.3 | |
- `yi_34b_200k_full_alpaca_enzh_256k_sp8.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/yi_34b/yi_34b_200k_full_alpaca_enzh_256k_sp8.py>`_ | |
.. list-table:: | |
:widths: 30 15 20 20 20 50 | |
:header-rows: 1 | |
* - 模型 | |
- GPUs | |
- 序列长度 | |
- TGS | |
- TFLOPs | |
- Config | |
* - Llama2-70B | |
- 32 | |
- 8k | |
- 216.8 | |
- 144.7 | |
- `llama2_70b_full_alpaca_enzh_8k_sp1.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_70b/llama2_70b_full_alpaca_enzh_8k_sp1.py>`_ | |
* - Llama2-70B | |
- 32 | |
- 32k | |
- 300.9 | |
- 239.6 | |
- `llama2_70b_full_alpaca_enzh_32k_sp4.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_70b/llama2_70b_full_alpaca_enzh_32k_sp4.py>`_ | |
* - Llama2-70B | |
- 32 | |
- 128k | |
- 144.7 | |
- 189.7 | |
- `llama2_70b_full_alpaca_enzh_128k_sp8.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_70b/llama2_70b_full_alpaca_enzh_128k_sp8.py>`_ | |
* - Llama2-70B | |
- 32 | |
- 256k | |
- 63.8 | |
- 127.6 | |
- `llama2_70b_full_alpaca_enzh_256k_sp16.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_70b/llama2_70b_full_alpaca_enzh_256k_sp16.py>`_ | |
* - Llama2-70B | |
- 64 | |
- 1M | |
- 21.8 | |
- 133.5 | |
- `llama2_70b_full_alpaca_enzh_1M_sp64.py <https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llama_speed_benchmark/llama2_70b/llama2_70b_full_alpaca_enzh_1M_sp64.py>`_ | |
.. note:: | |
所有实验都会将 Alpaca 数据集拼接为最大长度。由于 Alpaca 数据集所含 | |
token 数较少,无法拼接成超长序列(如 1M | |
长度),因此当序列长度较长时,会对 XTuner 代码进行如下修改: | |
.. code:: diff | |
# xtuner/dataset/huggingface.py | |
def build_origin_dataset(dataset, split): | |
... | |
+ # 6 times larger dataset (for speed testing purposes only) | |
+ dataset = concatenate_datasets([dataset for _ in range(6)]) | |
return dataset | |
def pack_dataset(dataset, max_length, use_varlen_attn, shuffle_before_pack, | |
map_num_proc): | |
dataset = dataset.map( | |
Packer(max_length, use_varlen_attn=use_varlen_attn), | |
batched=True, | |
- num_proc=map_num_proc | |
+ batch_size=25000, | |
+ num_proc=1 | |
) | |
return dataset | |
.. note:: | |
由于 Alpaca 数据量较小,因此做了第一处修改将数据集大小扩大了 6 | |
倍,以保证拥有足够的训练 iter 数(保证速度测试的稳定性)。另外,由于 | |
Alpaca | |
数据集每条数据的长度较短,因此在数据拼接的时候做了第二处修改以保证拥有足够多的数据,足以拼接为 | |
``max_length`` 最大长度。 | |
.. |image1| image:: https://github.com/InternLM/xtuner/assets/41630003/c9c05dbd-0806-4fb2-9da9-62f04b150f7c | |
.. |image2| image:: https://github.com/InternLM/xtuner/assets/41630003/3ef6308c-595b-4624-b56d-a8737a1f2261 | |
.. |image3| image:: https://github.com/InternLM/xtuner/assets/41630003/ba16368e-e5f7-41eb-89ed-1140a8633134 | |