Spaces:
Runtime error
Runtime error
File size: 8,005 Bytes
8f8a944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# Config 介绍
以 [internlm_7b_qlora_oasst1_e3](https://github.com/InternLM/xtuner/blob/main/xtuner/configs/internlm/internlm_7b/internlm_7b_qlora_oasst1_e3.py) 为例。
```python
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = 'internlm/internlm-7b' # 设置 LLM 路径或 HuggingFace Hub ID
# Data
data_path = 'timdettmers/openassistant-guanaco' # 设置 dataset 路径或 HuggingFace Hub ID,以用于 datasets.load_dataset
prompt_template = PROMPT_TEMPLATE.internlm_chat # 设置 prompt_template 以确定对话模板
max_length = 2048 # 设置训练数据最大长度
pack_to_max_length = True # 是否将多条样本打包为一条最长长度的样本
# Scheduler & Optimizer
batch_size = 1 # per_device # 每个设备的样本个数
accumulative_counts = 16 # 梯度累计数
dataloader_num_workers = 0 # dataloader worker 数
max_epochs = 3 # 训练迭代代数
optim_type = AdamW # 优化器
lr = 2e-4 # 学习率
betas = (0.9, 0.999) # AdamW 优化器 betas
weight_decay = 0 # 权重衰减
max_norm = 1 # grad clip # 梯度裁剪
warmup_ratio = 0.03 # warmup
# Save
save_steps = 500 # 保存间隔
save_total_limit = 2 # 最大保存 checkpoint 个数,-1 表示无限制
# Evaluate the generation performance during the training
evaluation_freq = 500 # 验证对话效果频率
SYSTEM = '' # 验证对话效果时对话字段
evaluation_inputs = [ # 验证对话效果时测试问题
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict( # 构建 tokenizer
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')
model = dict( # 构建 model
type=SupervisedFinetune, # 指令跟随微调
llm=dict( # LLM
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict( # 量化配置
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')),
lora=dict( # LoRA 配置
type=LoraConfig,
r=64,
lora_alpha=16,
lora_dropout=0.1,
bias='none',
task_type='CAUSAL_LM'))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict( # 构建训练数据集
type=process_hf_dataset,
dataset=dict(type=load_dataset, path=data_path), # 调用 datasets.load_dataset 接口
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=oasst1_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
train_dataloader = dict( # 构建 dataloader
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn)) # 使用默认的 collate_fn
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper, # 自动混合精度优化器
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR, # warmup 阶段
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR, # Cosine 学习率策略
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) # 设置 train loop
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer), # 在训练、测试前打印数据集样本
dict(
type=EvaluateChatHook, # 在训练时测试对话效果
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
# 以下均为默认配置,如需调整请参考 MMEngine 文档及代码
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
# set log processor
log_processor = dict(by_epoch=False)
```
|