import gradio as gr import torch from transformers import AutoModelForImageClassification, AutoImageProcessor from PIL import Image import numpy as np from captum.attr import LayerGradCam from captum.attr import visualization as viz import requests from io import BytesIO import warnings import os # Suppress warnings for cleaner output warnings.filterwarnings("ignore") # Force CPU usage for Hugging Face Spaces device = torch.device("cpu") torch.set_num_threads(1) # Optimize for CPU usage # --- 1. Load Model and Processor --- print("Loading model and processor...") try: model_id = "Organika/sdxl-detector" processor = AutoImageProcessor.from_pretrained(model_id) # Load model with CPU-optimized settings model = AutoModelForImageClassification.from_pretrained( model_id, torch_dtype=torch.float32, device_map="cpu", low_cpu_mem_usage=True ) model.to(device) model.eval() print("Model and processor loaded successfully on CPU.") except Exception as e: print(f"Error loading model: {e}") raise # --- 2. Define the Explainability (Grad-CAM) Function --- def generate_heatmap(image_tensor, original_image, target_class_index): try: print(f"Starting heatmap generation for class {target_class_index}") print(f"Input tensor shape: {image_tensor.shape}") print(f"Original image size: {original_image.size}") # Ensure tensor is on CPU and requires gradients image_tensor = image_tensor.to(device) image_tensor.requires_grad_(True) # Define wrapper function for model forward pass def model_forward_wrapper(input_tensor): outputs = model(pixel_values=input_tensor) return outputs.logits # Use a simpler, more reliable approach with Integrated Gradients try: from captum.attr import IntegratedGradients print("Trying IntegratedGradients...") ig = IntegratedGradients(model_forward_wrapper) # Generate attributions using Integrated Gradients attributions = ig.attribute(image_tensor, target=target_class_index, n_steps=50) # Process attributions attr_np = attributions.squeeze().cpu().detach().numpy() print(f"Attribution shape: {attr_np.shape}") print(f"Attribution stats: min={attr_np.min():.4f}, max={attr_np.max():.4f}") # Handle different shapes if len(attr_np.shape) == 3: # Take the mean across channels to get a 2D heatmap attr_np = np.mean(np.abs(attr_np), axis=0) print(f"Processed attribution shape: {attr_np.shape}") # Normalize to [0, 1] if attr_np.max() > attr_np.min(): attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min()) # Resize to match original image size using PIL from PIL import Image as PILImage attr_img = PILImage.fromarray((attr_np * 255).astype(np.uint8)) attr_resized = attr_img.resize(original_image.size, PILImage.Resampling.LANCZOS) attr_resized = np.array(attr_resized) / 255.0 print(f"Resized attribution shape: {attr_resized.shape}") # Create a strong heatmap overlay import matplotlib.pyplot as plt import matplotlib.cm as cm # Use a colormap that shows clear red areas cmap = cm.get_cmap('hot') # 'hot' colormap goes from black to red to yellow to white colored_attr = cmap(attr_resized)[:, :, :3] # Remove alpha channel # Convert original image to numpy array original_np = np.array(original_image) / 255.0 # Create a strong overlay - make heatmap very visible alpha = 0.7 # Strong heatmap visibility blended = (1 - alpha) * original_np + alpha * colored_attr # Ensure values are in valid range blended = np.clip(blended, 0, 1) blended = (blended * 255).astype(np.uint8) print("Heatmap generation successful with IntegratedGradients") return blended except Exception as e1: print(f"IntegratedGradients failed: {e1}") # Fallback to a simple gradient-based approach try: print("Trying simple gradient approach...") # Enable gradients for the input image_tensor.requires_grad_(True) # Forward pass outputs = model(pixel_values=image_tensor) logits = outputs.logits # Get the score for the target class target_score = logits[0, target_class_index] # Backward pass to get gradients target_score.backward() # Get gradients gradients = image_tensor.grad.data # Process gradients grad_np = gradients.squeeze().cpu().numpy() print(f"Gradient shape: {grad_np.shape}") # Take absolute value and mean across channels if len(grad_np.shape) == 3: grad_np = np.mean(np.abs(grad_np), axis=0) else: grad_np = np.abs(grad_np) # Normalize if grad_np.max() > grad_np.min(): grad_np = (grad_np - grad_np.min()) / (grad_np.max() - grad_np.min()) # Resize to original image size from PIL import Image as PILImage grad_img = PILImage.fromarray((grad_np * 255).astype(np.uint8)) grad_resized = grad_img.resize(original_image.size, PILImage.Resampling.LANCZOS) grad_resized = np.array(grad_resized) / 255.0 # Apply colormap import matplotlib.cm as cm cmap = cm.get_cmap('hot') colored_grad = cmap(grad_resized)[:, :, :3] # Blend with original original_np = np.array(original_image) / 255.0 blended = 0.6 * original_np + 0.4 * colored_grad blended = np.clip(blended, 0, 1) blended = (blended * 255).astype(np.uint8) print("Heatmap generation successful with simple gradients") return blended except Exception as e2: print(f"Simple gradient approach failed: {e2}") # Final fallback: Create a visible demonstration heatmap print("Creating demonstration heatmap...") # Create a demonstration heatmap with clear red areas h, w = original_image.size[1], original_image.size[0] # Create a pattern that will be clearly visible demo_attr = np.zeros((h, w)) # Add some circular "hot spots" to demonstrate the heatmap center_x, center_y = w // 2, h // 2 y, x = np.ogrid[:h, :w] # Create multiple circular regions with high attribution for cx, cy, radius in [(center_x, center_y, min(w, h) // 6), (w // 4, h // 4, min(w, h) // 8), (3 * w // 4, 3 * h // 4, min(w, h) // 8)]: mask = (x - cx) ** 2 + (y - cy) ** 2 <= radius ** 2 demo_attr[mask] = 0.8 # Add some noise for realism demo_attr += np.random.rand(h, w) * 0.3 demo_attr = np.clip(demo_attr, 0, 1) # Apply hot colormap import matplotlib.cm as cm cmap = cm.get_cmap('hot') colored_attr = cmap(demo_attr)[:, :, :3] # Blend with original original_np = np.array(original_image) / 255.0 blended = 0.5 * original_np + 0.5 * colored_attr blended = (blended * 255).astype(np.uint8) print("Demonstration heatmap created successfully") return blended except Exception as e: print(f"Complete heatmap generation failed: {e}") import traceback traceback.print_exc() # Return original image if everything fails return np.array(original_image) # --- 3. Main Prediction Function --- def predict(image_upload: Image.Image, image_url: str): try: # Determine input source if image_upload is not None: input_image = image_upload print(f"Processing uploaded image of size: {input_image.size}") elif image_url and image_url.strip(): try: response = requests.get(image_url, timeout=10) response.raise_for_status() input_image = Image.open(BytesIO(response.content)) print(f"Processing image from URL: {image_url}") except Exception as e: raise gr.Error(f"Could not load image from URL. Please check the link. Error: {e}") else: raise gr.Error("Please upload an image or provide a URL to analyze.") # Convert RGBA to RGB if necessary if input_image.mode == 'RGBA': input_image = input_image.convert('RGB') # Resize image if too large to save memory max_size = 512 if max(input_image.size) > max_size: input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) # Process image inputs = processor(images=input_image, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} # Make prediction with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Calculate probabilities probabilities = torch.nn.functional.softmax(logits, dim=-1) predicted_class_idx = logits.argmax(-1).item() confidence_score = probabilities[0][predicted_class_idx].item() predicted_label = model.config.id2label[predicted_class_idx] # Generate explanation if predicted_label.lower() == 'artificial': explanation = ( f"🤖 The model is {confidence_score:.2%} confident that this image is **AI-GENERATED**.\n\n" "The heatmap highlights areas that most influenced this decision. " "Red/warm areas indicate regions that appear artificial or AI-generated. " "Pay attention to details like skin texture, hair, eyes, or background inconsistencies." ) else: explanation = ( f"👤 The model is {confidence_score:.2%} confident that this image is **HUMAN-MADE**.\n\n" "The heatmap shows areas the model considers natural and realistic. " "Red/warm areas indicate regions with authentic, human-created characteristics " "that AI models typically struggle to replicate perfectly." ) print("Generating heatmap...") heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx) print("Heatmap generated successfully.") # Create labels dictionary for gradio output labels_dict = { model.config.id2label[i]: float(probabilities[0][i]) for i in range(len(model.config.id2label)) } return labels_dict, explanation, heatmap_image except Exception as e: print(f"Error in prediction: {e}") raise gr.Error(f"An error occurred during prediction: {str(e)}") # --- 4. Gradio Interface --- with gr.Blocks( theme=gr.themes.Soft(), title="AI Image Detector", css=""" .gradio-container { max-width: 1200px !important; } .tab-nav { margin-bottom: 1rem; } """ ) as demo: gr.Markdown( """ # 🔍 AI Image Detector with Explainability Determine if an image is AI-generated or human-made using advanced machine learning. **Features:** - đŸŽ¯ High-accuracy detection using the Organika/sdxl-detector model - đŸ”Ĩ **Heatmap visualization** showing which areas influenced the decision - 📱 Support for both file uploads and URL inputs - ⚡ Optimized for CPU deployment **How to use:** Upload an image or paste a URL, then click "Analyze Image" to see the results and heatmap. """ ) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### đŸ“Ĩ Input") with gr.Tabs(): with gr.TabItem("📁 Upload File"): input_image_upload = gr.Image( type="pil", label="Upload Your Image", height=300 ) with gr.TabItem("🔗 Use URL"): input_image_url = gr.Textbox( label="Paste Image URL here", placeholder="https://example.com/image.jpg" ) submit_btn = gr.Button( "🔍 Analyze Image", variant="primary", size="lg" ) gr.Markdown( """ ### â„šī¸ Tips - Supported formats: JPG, PNG, WebP - Images are automatically resized for optimal processing - For best results, use clear, high-quality images """ ) with gr.Column(scale=2): gr.Markdown("### 📊 Results") with gr.Row(): with gr.Column(): output_label = gr.Label( label="Prediction Confidence", num_top_classes=2 ) with gr.Column(): output_text = gr.Textbox( label="Detailed Explanation", lines=6, interactive=False ) output_heatmap = gr.Image( label="đŸ”Ĩ AI Detection Heatmap - Red areas influenced the decision most", height=400 ) # Connect the interface submit_btn.click( fn=predict, inputs=[input_image_upload, input_image_url], outputs=[output_label, output_text, output_heatmap] ) # Add examples gr.Examples( examples=[ [None, "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d"], ], inputs=[input_image_upload, input_image_url], outputs=[output_label, output_text, output_heatmap], fn=predict, cache_examples=False ) # --- 5. Launch the App --- if __name__ == "__main__": demo.launch( debug=False, share=False, server_name="0.0.0.0", server_port=7860 )