|
|
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from scipy import stats |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import classification_report, roc_auc_score |
|
from tabulate import tabulate |
|
import warnings |
|
import traceback |
|
import gradio as gr |
|
import os |
|
import git |
|
|
|
|
|
|
|
warnings.filterwarnings('ignore') |
|
plt.style.use('default') |
|
sns.set_palette("husl") |
|
|
|
|
|
class EnhancedAIvsRealGazeAnalyzer: |
|
def __init__(self): |
|
self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6'] |
|
self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'} |
|
self.combined_data = None |
|
self.response_data = None |
|
self.numeric_cols = [] |
|
self.time_metrics = [] |
|
|
|
def load_and_process_data(self, base_path, response_file): |
|
"""Loads all data and preprocesses it once.""" |
|
print("Loading and processing data...") |
|
|
|
self.response_data = pd.read_excel(response_file) if response_file.endswith('.xlsx') else pd.read_csv( |
|
response_file) |
|
self.response_data.columns = self.response_data.columns.str.strip() |
|
for pair, correct_answer in self.correct_answers.items(): |
|
if pair in self.response_data.columns: |
|
self.response_data[f'{pair}_Correct'] = ( |
|
self.response_data[pair].astype(str).str.strip().str.upper() == correct_answer) |
|
|
|
|
|
all_data = {} |
|
for question in self.questions: |
|
file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{question}.xlsx" |
|
if os.path.exists(file_path): |
|
xls = pd.ExcelFile(file_path) |
|
all_data[question] = {sheet_name: pd.read_excel(xls, sheet_name) for sheet_name in xls.sheet_names} |
|
|
|
|
|
all_dfs = [df.copy().assign(Question=q, Metric_Type=m) for q, qd in all_data.items() for m, df in qd.items()] |
|
if not all_dfs: |
|
raise ValueError("No eye-tracking data files were found or loaded.") |
|
|
|
self.combined_data = pd.concat(all_dfs, ignore_index=True) |
|
self.combined_data.columns = self.combined_data.columns.str.strip() |
|
|
|
|
|
et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), None) |
|
resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), None) |
|
|
|
response_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=self.correct_answers.keys(), |
|
var_name='Pair', value_name='Response') |
|
correctness_long = self.response_data.melt(id_vars=[resp_id_col], |
|
value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], |
|
var_name='Pair_Correct_Col', value_name='Correct') |
|
correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '') |
|
response_long = response_long.merge(correctness_long[[resp_id_col, 'Pair', 'Correct']], |
|
on=[resp_id_col, 'Pair']) |
|
|
|
q_to_pair = {f'Q{i + 1}': f'Pair{i + 1}' for i in range(6)} |
|
self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair) |
|
self.combined_data = self.combined_data.merge(response_long, left_on=[et_id_col, 'Pair'], |
|
right_on=[resp_id_col, 'Pair'], how='left') |
|
self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map( |
|
{True: 'Correct', False: 'Incorrect'}) |
|
|
|
|
|
self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist() |
|
self.time_metrics = [c for c in self.numeric_cols if |
|
any(k in c.lower() for k in ['time', 'duration', 'fixation'])] |
|
print("Data loading complete.") |
|
return self |
|
|
|
def analyze_rq1_metric(self, metric): |
|
"""Analyzes a single metric for RQ1.""" |
|
if metric not in self.combined_data.columns: |
|
return None, "Metric not found." |
|
|
|
correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna() |
|
incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna() |
|
|
|
|
|
t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit') |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(8, 6)) |
|
sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff', '#ff9999']) |
|
ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14) |
|
ax.set_xlabel("Answer Correctness") |
|
ax.set_ylabel(metric) |
|
plt.tight_layout() |
|
|
|
|
|
summary = f""" |
|
### Analysis for: **{metric}** |
|
- **Mean (Correct Answers):** {correct.mean():.4f} |
|
- **Mean (Incorrect Answers):** {incorrect.mean():.4f} |
|
- **T-test p-value:** {p_val:.4f} |
|
|
|
**Conclusion:** |
|
- {'There is a **statistically significant** difference between the groups (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference between the groups (p >= 0.05).'} |
|
""" |
|
return fig, summary |
|
|
|
def run_prediction_model(self, test_size, n_estimators): |
|
"""Runs the RandomForest model with given parameters for RQ2.""" |
|
leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct'] |
|
features_to_use = [col for col in self.numeric_cols if col not in leaky_features] |
|
|
|
features = self.combined_data[features_to_use].copy() |
|
target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0}) |
|
|
|
valid_indices = target.notna() |
|
features, target = features[valid_indices], target[valid_indices] |
|
features = features.fillna(features.median()).fillna(0) |
|
|
|
if len(target.unique()) < 2: |
|
return "Not enough classes to train the model.", None |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, |
|
stratify=target) |
|
scaler = StandardScaler() |
|
X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test) |
|
|
|
model = RandomForestClassifier(n_estimators=n_estimators, random_state=42, class_weight='balanced') |
|
model.fit(X_train_scaled, y_train) |
|
y_pred_proba = model.predict_proba(X_test_scaled)[:, 1] |
|
y_pred = model.predict(X_test_scaled) |
|
|
|
|
|
report = classification_report(y_test, y_pred, target_names=['Incorrect', 'Correct'], output_dict=True) |
|
auc_score = roc_auc_score(y_test, y_pred_proba) |
|
|
|
report_df = pd.DataFrame(report).transpose().round(3) |
|
report_md = f""" |
|
### Model Performance |
|
- **AUC Score:** **{auc_score:.4f}** |
|
- **Overall Accuracy:** {report['accuracy']:.3f} |
|
|
|
**Classification Report:** |
|
{report_df.to_markdown()} |
|
""" |
|
|
|
|
|
feature_importance = pd.DataFrame({'Feature': features.columns, 'Importance': model.feature_importances_}) |
|
feature_importance = feature_importance.sort_values('Importance', ascending=False).head(15) |
|
|
|
fig, ax = plt.subplots(figsize=(10, 8)) |
|
sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis') |
|
ax.set_title(f'Top 15 Predictive Features (n_estimators={n_estimators})', fontsize=14) |
|
plt.tight_layout() |
|
|
|
return report_md, fig |
|
|
|
|
|
|
|
def setup_and_load_data(): |
|
"""Clones the repo if not present and loads data.""" |
|
repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset" |
|
repo_dir = "GenAIEyeTrackingCleanedDataset" |
|
|
|
if not os.path.exists(repo_dir): |
|
print(f"Cloning data repository from {repo_url}...") |
|
git.Repo.clone_from(repo_url, repo_dir) |
|
else: |
|
print("Data repository already exists.") |
|
|
|
base_path = os.path.join(repo_dir, "cleaned_dataset") |
|
response_file = os.path.join(repo_dir, "response_sheet", "GenAI_Response_Sheet.xlsx") |
|
|
|
analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file) |
|
return analyzer |
|
|
|
|
|
print("Starting application setup...") |
|
analyzer = setup_and_load_data() |
|
print("Application setup complete. Ready for interaction.") |
|
|
|
|
|
|
|
def update_rq1_visuals(metric_choice): |
|
"""Called by Gradio when the dropdown for RQ1 changes.""" |
|
if not metric_choice: |
|
return None, "Please select a metric from the dropdown." |
|
plot, summary = analyzer.analyze_rq1_metric(metric_choice) |
|
return plot, summary |
|
|
|
|
|
def update_rq2_model(test_size, n_estimators): |
|
"""Called by Gradio when sliders for RQ2 change.""" |
|
n_estimators = int(n_estimators) |
|
report, plot = analyzer.run_prediction_model(test_size, n_estimators) |
|
return report, plot |
|
|
|
|
|
|
|
description = """ |
|
# Interactive Dashboard: AI vs. Real Gaze Analysis |
|
Explore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository. |
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown(description) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("RQ1: Viewing Time vs. Correctness"): |
|
gr.Markdown("### Does viewing time differ based on whether a participant's answer was correct?") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
rq1_metric_dropdown = gr.Dropdown( |
|
choices=analyzer.time_metrics, |
|
label="Select a Time-Based Metric to Analyze", |
|
value=analyzer.time_metrics[0] if analyzer.time_metrics else None |
|
) |
|
rq1_summary_output = gr.Markdown(label="Statistical Summary") |
|
with gr.Column(scale=2): |
|
rq1_plot_output = gr.Plot(label="Metric Comparison") |
|
|
|
with gr.TabItem("RQ2: Predicting Correctness from Gaze"): |
|
gr.Markdown("### Can we build a model to predict answer correctness from gaze patterns?") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("#### Tune Model Hyperparameters") |
|
rq2_test_size_slider = gr.Slider( |
|
minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size" |
|
) |
|
rq2_estimators_slider = gr.Slider( |
|
minimum=10, maximum=200, step=10, value=100, label="Number of Trees (n_estimators)" |
|
) |
|
rq2_report_output = gr.Markdown(label="Model Performance Report") |
|
with gr.Column(scale=2): |
|
rq2_plot_output = gr.Plot(label="Feature Importance") |
|
|
|
|
|
rq1_metric_dropdown.change( |
|
fn=update_rq1_visuals, |
|
inputs=[rq1_metric_dropdown], |
|
outputs=[rq1_plot_output, rq1_summary_output] |
|
) |
|
|
|
|
|
rq2_test_size_slider.release( |
|
fn=update_rq2_model, |
|
inputs=[rq2_test_size_slider, rq2_estimators_slider], |
|
outputs=[rq2_report_output, rq2_plot_output] |
|
) |
|
rq2_estimators_slider.release( |
|
fn=update_rq2_model, |
|
inputs=[rq2_test_size_slider, rq2_estimators_slider], |
|
outputs=[rq2_report_output, rq2_plot_output] |
|
) |
|
|
|
|
|
demo.load( |
|
fn=update_rq1_visuals, |
|
inputs=[rq1_metric_dropdown], |
|
outputs=[rq1_plot_output, rq1_summary_output] |
|
) |
|
demo.load( |
|
fn=update_rq2_model, |
|
inputs=[rq2_test_size_slider, rq2_estimators_slider], |
|
outputs=[rq2_report_output, rq2_plot_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |