File size: 18,338 Bytes
cac722b e98015f 6bfbd7f e98015f 1c82e5b e98015f 1074b1e e98015f cd63cff 9b9f42f 25e6b09 cac722b e98015f ab34e07 9b9f42f ab34e07 1c82e5b 6bfbd7f 9b9f42f e98015f 9b9f42f 1c82e5b ab34e07 1c82e5b eadab79 9b9f42f eadab79 ab34e07 1c82e5b 9b9f42f e98015f ab34e07 9b9f42f eadab79 9b9f42f cac722b 9b9f42f e3afe9e e98015f 9b9f42f 25e6b09 9b9f42f e98015f 9b9f42f eadab79 9b9f42f 25e6b09 9b9f42f 1c82e5b cd63cff 1c82e5b 9b9f42f 1c82e5b 6bfbd7f 1c82e5b 9b9f42f 1c82e5b 9b9f42f eadab79 1c82e5b eadab79 1c82e5b eadab79 1c82e5b 9b9f42f ca7b998 9b9f42f ca7b998 9b9f42f cac722b 9b9f42f cac722b 9b9f42f ca7b998 9b9f42f cac722b e98015f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# app.py (Corrected and Ready to Run)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
import warnings
import gradio as gr
import os
import git
# --- Main Class ---
warnings.filterwarnings('ignore')
plt.style.use('default')
sns.set_palette("husl")
class EnhancedAIvsRealGazeAnalyzer:
def __init__(self):
self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
self.combined_data = None
self.fixation_data = {}
self.valid_playback_participants = []
self.valid_playback_trials = {}
self.model = None
self.scaler = None
self.feature_names = []
self.time_metrics = [] # Initialize here
def _find_and_standardize_participant_col(self, df, filename):
participant_col = next((c for c in df.columns if 'participant' in str(c).lower()), None)
if not participant_col:
raise ValueError(f"Could not find a 'participant' column in the file: {filename}")
df = df.rename(columns={participant_col: 'participant_id'})
df['participant_id'] = df['participant_id'].astype(str)
return df
def load_and_process_data(self, base_path, response_file_path):
print("--- Starting Robust Data Loading ---")
response_df = pd.read_excel(response_file_path)
response_df = self._find_and_standardize_participant_col(response_df, "GenAI Response.xlsx")
for pair, ans in self.correct_answers.items():
if pair in response_df.columns:
response_df[f'{pair}_Correct'] = (response_df[pair].astype(str).str.strip().str.upper() == ans)
response_long = response_df.melt(id_vars=['participant_id'], value_vars=self.correct_answers.keys(), var_name='Pair')
correctness_long = response_df.melt(id_vars=['participant_id'], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
response_long = response_long.merge(correctness_long[['participant_id', 'Pair', 'Correct']], on=['participant_id', 'Pair'])
all_metrics_dfs = []
for q in self.questions:
file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{q}.xlsx"
if os.path.exists(file_path):
print(f"Processing {file_path}...")
xls = pd.ExcelFile(file_path)
metrics_df = pd.read_excel(xls, sheet_name=0)
metrics_df = self._find_and_standardize_participant_col(metrics_df, f"{q} Metrics")
metrics_df['Question'] = q
all_metrics_dfs.append(metrics_df)
if len(xls.sheet_names) > 1:
try:
fix_df = pd.read_excel(xls, sheet_name=1)
fix_df = self._find_and_standardize_participant_col(fix_df, f"{q} Fixations")
fix_df.dropna(subset=['Fixation point X', 'Fixation point Y', 'Gaze event duration (ms)'], inplace=True)
for participant_id, group in fix_df.groupby('participant_id'):
self.fixation_data[(participant_id, q)] = group.reset_index(drop=True)
if participant_id not in self.valid_playback_trials:
self.valid_playback_trials[participant_id] = []
self.valid_playback_trials[participant_id].append(q)
print(f" -> Successfully loaded {len(fix_df)} fixations for {q}.")
except Exception as e:
print(f" -> WARNING: Could not load fixation sheet for {q}. Error: {e}")
if not all_metrics_dfs: raise ValueError("No aggregated metrics files were found.")
self.combined_data = pd.concat(all_metrics_dfs, ignore_index=True)
q_to_pair = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
self.combined_data = self.combined_data.merge(response_long, on=['participant_id', 'Pair'], how='left')
self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
# <<< FIX: Removed the space in the variable name here >>>
self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
self.valid_playback_participants = sorted(list(self.valid_playback_trials.keys()))
print(f"--- Data Loading Successful. Found {len(self.valid_playback_participants)} participants with fixation data. ---")
return self
def run_prediction_model(self, test_size, n_estimators):
leaky_features = ['participant_id', 'Correct', 'Total_Correct', 'Overall_Accuracy']
self.feature_names = [col for col in self.numeric_cols if col not in leaky_features]
features = self.combined_data[self.feature_names].copy()
target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
valid_indices = target.notna()
features, target = features[valid_indices], target[valid_indices]
features = features.fillna(features.median()).fillna(0)
if len(target.unique()) < 2: return "Not enough data to train.", None, None, gr.Markdown("Model not trained yet.")
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
self.scaler = StandardScaler().fit(X_train)
self.model = RandomForestClassifier(n_estimators=int(n_estimators), random_state=42, class_weight='balanced').fit(self.scaler.transform(X_train), y_train)
report = classification_report(y_test, self.model.predict(self.scaler.transform(X_test)), target_names=['Incorrect', 'Correct'], output_dict=True)
auc_score = roc_auc_score(y_test, self.model.predict_proba(self.scaler.transform(X_test))[:, 1])
summary_md = f"### Model Performance\n- **AUC Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}"
report_df = pd.DataFrame(report).transpose().round(3)
feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature_importances_}).sort_values('Importance', ascending=False).head(15)
fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f'Top 15 Predictive Features (n_estimators={int(n_estimators)})', fontsize=14); plt.tight_layout()
return summary_md, report_df, fig, gr.Markdown("β
**Model is ready!** You can now use the Gaze Playback tab.")
def _recalculate_features_from_fixations(self, fixations_df):
feature_vector = pd.Series(0.0, index=self.feature_names)
if fixations_df.empty: return feature_vector.fillna(0).values.reshape(1, -1)
if 'AOI name' in fixations_df.columns:
for aoi_name, group in fixations_df.groupby('AOI name'):
col_name = f'Total fixation duration on {aoi_name}'
if col_name in feature_vector.index:
feature_vector[col_name] = group['Gaze event duration (ms)'].sum()
feature_vector['Total Recording Duration'] = fixations_df['Gaze event duration (ms)'].sum()
return feature_vector.fillna(0).values.reshape(1, -1)
def generate_gaze_playback(self, participant, question, fixation_num):
if self.model is None: return "Please train a model in Tab 2 first.", None, gr.Slider(interactive=False)
trial_key = (str(participant), question)
if not participant or not question or trial_key not in self.fixation_data:
return "Please select a valid trial.", None, gr.Slider(interactive=False, value=0)
all_fixations = self.fixation_data[trial_key]
fixation_num = int(fixation_num)
slider_max = len(all_fixations)
if fixation_num > slider_max: fixation_num = slider_max
current_fixations = all_fixations.iloc[:fixation_num]
partial_features = self._recalculate_features_from_fixations(current_fixations)
prediction_prob = self.model.predict_proba(self.scaler.transform(partial_features))[0]
prob_correct = prediction_prob[1]
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [4, 1]})
fig.suptitle(f"Gaze Playback for {participant} - {question}", fontsize=16, weight='bold')
ax1.set_title(f"Displaying Fixations 1 through {fixation_num}/{slider_max}")
ax1.set_xlim(0, 1920); ax1.set_ylim(1080, 0)
ax1.set_aspect('equal'); ax1.tick_params(left=False, right=False, bottom=False, top=False, labelleft=False, labelbottom=False)
ax1.add_patch(patches.Rectangle((0, 0), 1920/2, 1080, facecolor='#e0e0e0'))
ax1.add_patch(patches.Rectangle((1920/2, 0), 1920/2, 1080, facecolor='#f0f0f0'))
ax1.text(1920*0.25, 50, "Image A", ha='center', fontsize=14, alpha=0.7)
ax1.text(1920*0.75, 50, "Image B", ha='center', fontsize=14, alpha=0.7)
if not current_fixations.empty:
points = current_fixations[['Fixation point X', 'Fixation point Y']]
ax1.plot(points['Fixation point X'], points['Fixation point Y'], marker='o', color='grey', alpha=0.5, linestyle='-')
ax1.scatter(points.iloc[-1]['Fixation point X'], points.iloc[-1]['Fixation point Y'], s=200, c='red', zorder=10, edgecolors='black', lw=2)
ax2.set_xlim(0, 1); ax2.set_yticks([])
ax2.set_title("Live Prediction Confidence (Answer is 'Correct')")
bar_color = 'green' if prob_correct > 0.5 else 'red'
ax2.barh([0], [prob_correct], color=bar_color, height=0.5, edgecolor='black')
ax2.axvline(0.5, color='black', linestyle='--', linewidth=1)
ax2.text(prob_correct, 0, f" {prob_correct:.1%} ", va='center', ha='left' if prob_correct < 0.9 else 'right', color='white', weight='bold', fontsize=12)
plt.tight_layout(rect=[0, 0, 1, 0.95])
trial_info = self.combined_data[(self.combined_data['participant_id'] == str(participant)) & (self.combined_data['Question'] == question)].iloc[0]
summary_text = f"**Actual Answer:** `{trial_info['Answer_Correctness']}`"
return summary_text, fig, gr.Slider(maximum=slider_max, value=fixation_num, interactive=True, step=1, minimum=0)
def analyze_rq1_metric(self, metric):
if not metric or metric not in self.combined_data.columns: return None, "Metric not found."
correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
if len(correct) < 2 or len(incorrect) < 2: return None, "Not enough data for both groups to compare."
t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout()
summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}"""
return fig, summary
def update_question_dropdown(self, participant):
"""Dynamically updates the question dropdown based on the selected participant."""
valid_questions = self.valid_playback_trials.get(participant, [])
return gr.Dropdown(choices=sorted(valid_questions), interactive=True, value=None, label="2. Select a Question")
def handle_new_trial_selection(self, participant, question):
"""Called when a new trial is selected. Resets the view to the first fixation."""
if not participant or not question:
return "Select a trial to begin.", None, gr.Slider(value=0, interactive=False)
initial_fixation_num = 1
return self.generate_gaze_playback(participant, question, initial_fixation_num)
# --- DATA SETUP & GRADIO APP ---
def setup_and_load_data():
repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
repo_dir = "GenAIEyeTrackingCleanedDataset"
if not os.path.exists(repo_dir):
print(f"Cloning repository {repo_url}...")
git.Repo.clone_from(repo_url, repo_dir)
else:
print("Data repository already exists.")
base_path = repo_dir
response_file_path = os.path.join(repo_dir, "GenAI Response.xlsx")
analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file_path)
return analyzer
analyzer = setup_and_load_data()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
with gr.Tabs():
with gr.TabItem("π RQ1: Viewing Time vs. Correctness"):
with gr.Row():
with gr.Column(scale=1):
rq1_metric_dropdown=gr.Dropdown(choices=analyzer.time_metrics, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
rq1_summary_output=gr.Markdown(label="Statistical Summary")
with gr.Column(scale=2):
rq1_plot_output=gr.Plot(label="Metric Comparison")
with gr.TabItem("π€ RQ2: Predicting Correctness from Gaze"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Tune Model Hyperparameters")
rq2_test_size_slider=gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
rq2_estimators_slider=gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees")
rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.")
with gr.Column(scale=2):
rq2_summary_output=gr.Markdown(label="Model Performance Summary")
rq2_table_output=gr.Dataframe(label="Classification Report", interactive=False)
rq2_plot_output=gr.Plot(label="Feature Importance")
with gr.TabItem("ποΈ Gaze Playback & Real-Time Prediction"):
gr.Markdown("### See the Prediction Evolve with Every Glance!")
with gr.Row():
with gr.Column(scale=1):
playback_participant=gr.Dropdown(choices=analyzer.valid_playback_participants, label="1. Select a Participant")
playback_question=gr.Dropdown(choices=[], label="2. Select a Question", interactive=False)
gr.Markdown("3. Use the slider to play back fixations one by one.")
playback_slider=gr.Slider(minimum=0, maximum=1, step=1, value=0, label="Fixation Number", interactive=False)
playback_summary=gr.Markdown(label="Trial Info")
with gr.Column(scale=2):
playback_plot=gr.Plot(label="Gaze Playback & Live Prediction")
# --- WIRING FOR ALL TABS ---
outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status]
outputs_playback = [playback_summary, playback_plot, playback_slider]
rq1_metric_dropdown.change(fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq1_summary_output])
train_event = rq2_test_size_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
rq2_estimators_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
playback_participant.change(
fn=analyzer.update_question_dropdown,
inputs=playback_participant,
outputs=playback_question
)
playback_question.change(
fn=analyzer.handle_new_trial_selection,
inputs=[playback_participant, playback_question],
outputs=outputs_playback
)
playback_slider.release(
fn=analyzer.generate_gaze_playback,
inputs=[playback_participant, playback_question, playback_slider],
outputs=outputs_playback
)
# Pre-load the initial state of the dashboard
def initial_load():
# Load the first tab's content
rq1_fig, rq1_summary = analyzer.analyze_rq1_metric(analyzer.time_metrics[0] if analyzer.time_metrics else None)
# Train the initial model for the second tab
model_summary, report_df, feature_fig, status_md = analyzer.run_prediction_model(0.3, 100)
# Return all the values needed to populate the outputs on load
return {
rq1_plot_output: rq1_fig,
rq1_summary_output: rq1_summary,
rq2_summary_output: model_summary,
rq2_table_output: report_df,
rq2_plot_output: feature_fig,
rq2_status: status_md
}
demo.load(
fn=initial_load,
outputs=[
rq1_plot_output, rq1_summary_output,
rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status
]
)
if __name__ == "__main__":
demo.launch() |