File size: 18,338 Bytes
cac722b
e98015f
 
 
6bfbd7f
e98015f
 
1c82e5b
e98015f
 
 
 
 
 
 
 
1074b1e
e98015f
 
 
 
 
 
 
 
 
cd63cff
9b9f42f
 
25e6b09
 
 
cac722b
e98015f
ab34e07
 
 
 
9b9f42f
ab34e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c82e5b
6bfbd7f
9b9f42f
e98015f
9b9f42f
1c82e5b
 
ab34e07
1c82e5b
 
 
eadab79
 
 
 
 
9b9f42f
 
 
 
 
 
eadab79
 
ab34e07
1c82e5b
 
9b9f42f
e98015f
ab34e07
9b9f42f
eadab79
9b9f42f
cac722b
 
 
 
9b9f42f
 
e3afe9e
e98015f
9b9f42f
 
 
25e6b09
9b9f42f
 
 
e98015f
9b9f42f
 
 
eadab79
9b9f42f
 
 
25e6b09
9b9f42f
 
 
 
 
1c82e5b
cd63cff
1c82e5b
9b9f42f
1c82e5b
 
 
 
 
6bfbd7f
1c82e5b
9b9f42f
1c82e5b
 
9b9f42f
eadab79
1c82e5b
 
 
 
 
eadab79
1c82e5b
 
 
eadab79
1c82e5b
9b9f42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7b998
9b9f42f
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7b998
 
 
 
 
 
 
 
9b9f42f
 
 
 
 
cac722b
 
 
 
 
9b9f42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cac722b
9b9f42f
 
ca7b998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9f42f
cac722b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98015f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# app.py (Corrected and Ready to Run)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
import warnings
import gradio as gr
import os
import git

# --- Main Class ---
warnings.filterwarnings('ignore')
plt.style.use('default')
sns.set_palette("husl")

class EnhancedAIvsRealGazeAnalyzer:
    def __init__(self):
        self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
        self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
        self.combined_data = None
        self.fixation_data = {}
        self.valid_playback_participants = []
        self.valid_playback_trials = {}
        self.model = None
        self.scaler = None
        self.feature_names = []
        self.time_metrics = [] # Initialize here

    def _find_and_standardize_participant_col(self, df, filename):
        participant_col = next((c for c in df.columns if 'participant' in str(c).lower()), None)
        if not participant_col:
            raise ValueError(f"Could not find a 'participant' column in the file: {filename}")
        df = df.rename(columns={participant_col: 'participant_id'})
        df['participant_id'] = df['participant_id'].astype(str)
        return df

    def load_and_process_data(self, base_path, response_file_path):
        print("--- Starting Robust Data Loading ---")
        response_df = pd.read_excel(response_file_path)
        response_df = self._find_and_standardize_participant_col(response_df, "GenAI Response.xlsx")
        for pair, ans in self.correct_answers.items():
            if pair in response_df.columns:
                response_df[f'{pair}_Correct'] = (response_df[pair].astype(str).str.strip().str.upper() == ans)
        response_long = response_df.melt(id_vars=['participant_id'], value_vars=self.correct_answers.keys(), var_name='Pair')
        correctness_long = response_df.melt(id_vars=['participant_id'], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
        correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
        response_long = response_long.merge(correctness_long[['participant_id', 'Pair', 'Correct']], on=['participant_id', 'Pair'])

        all_metrics_dfs = []
        for q in self.questions:
            file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{q}.xlsx"
            if os.path.exists(file_path):
                print(f"Processing {file_path}...")
                xls = pd.ExcelFile(file_path)
                metrics_df = pd.read_excel(xls, sheet_name=0)
                metrics_df = self._find_and_standardize_participant_col(metrics_df, f"{q} Metrics")
                metrics_df['Question'] = q
                all_metrics_dfs.append(metrics_df)
                
                if len(xls.sheet_names) > 1:
                    try:
                        fix_df = pd.read_excel(xls, sheet_name=1)
                        fix_df = self._find_and_standardize_participant_col(fix_df, f"{q} Fixations")
                        fix_df.dropna(subset=['Fixation point X', 'Fixation point Y', 'Gaze event duration (ms)'], inplace=True)
                        for participant_id, group in fix_df.groupby('participant_id'):
                            self.fixation_data[(participant_id, q)] = group.reset_index(drop=True)
                            if participant_id not in self.valid_playback_trials:
                                self.valid_playback_trials[participant_id] = []
                            self.valid_playback_trials[participant_id].append(q)
                        print(f"  -> Successfully loaded {len(fix_df)} fixations for {q}.")
                    except Exception as e:
                        print(f"  -> WARNING: Could not load fixation sheet for {q}. Error: {e}")

        if not all_metrics_dfs: raise ValueError("No aggregated metrics files were found.")
        self.combined_data = pd.concat(all_metrics_dfs, ignore_index=True)
        q_to_pair = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
        self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
        self.combined_data = self.combined_data.merge(response_long, on=['participant_id', 'Pair'], how='left')
        self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
        
        self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
        
        # <<< FIX: Removed the space in the variable name here >>>
        self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
        
        self.valid_playback_participants = sorted(list(self.valid_playback_trials.keys()))
        print(f"--- Data Loading Successful. Found {len(self.valid_playback_participants)} participants with fixation data. ---")
        return self

    def run_prediction_model(self, test_size, n_estimators):
        leaky_features = ['participant_id', 'Correct', 'Total_Correct', 'Overall_Accuracy']
        self.feature_names = [col for col in self.numeric_cols if col not in leaky_features]
        features = self.combined_data[self.feature_names].copy()
        target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
        valid_indices = target.notna()
        features, target = features[valid_indices], target[valid_indices]
        features = features.fillna(features.median()).fillna(0)
        if len(target.unique()) < 2: return "Not enough data to train.", None, None, gr.Markdown("Model not trained yet.")
        X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
        self.scaler = StandardScaler().fit(X_train)
        self.model = RandomForestClassifier(n_estimators=int(n_estimators), random_state=42, class_weight='balanced').fit(self.scaler.transform(X_train), y_train)
        report = classification_report(y_test, self.model.predict(self.scaler.transform(X_test)), target_names=['Incorrect', 'Correct'], output_dict=True)
        auc_score = roc_auc_score(y_test, self.model.predict_proba(self.scaler.transform(X_test))[:, 1])
        summary_md = f"### Model Performance\n- **AUC Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}"
        report_df = pd.DataFrame(report).transpose().round(3)
        feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature_importances_}).sort_values('Importance', ascending=False).head(15)
        fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f'Top 15 Predictive Features (n_estimators={int(n_estimators)})', fontsize=14); plt.tight_layout()
        return summary_md, report_df, fig, gr.Markdown("βœ… **Model is ready!** You can now use the Gaze Playback tab.")

    def _recalculate_features_from_fixations(self, fixations_df):
        feature_vector = pd.Series(0.0, index=self.feature_names)
        if fixations_df.empty: return feature_vector.fillna(0).values.reshape(1, -1)
        if 'AOI name' in fixations_df.columns:
            for aoi_name, group in fixations_df.groupby('AOI name'):
                col_name = f'Total fixation duration on {aoi_name}'
                if col_name in feature_vector.index:
                    feature_vector[col_name] = group['Gaze event duration (ms)'].sum()
        feature_vector['Total Recording Duration'] = fixations_df['Gaze event duration (ms)'].sum()
        return feature_vector.fillna(0).values.reshape(1, -1)

    def generate_gaze_playback(self, participant, question, fixation_num):
        if self.model is None: return "Please train a model in Tab 2 first.", None, gr.Slider(interactive=False)
        trial_key = (str(participant), question)
        if not participant or not question or trial_key not in self.fixation_data:
            return "Please select a valid trial.", None, gr.Slider(interactive=False, value=0)
        
        all_fixations = self.fixation_data[trial_key]
        fixation_num = int(fixation_num)
        slider_max = len(all_fixations)
        if fixation_num > slider_max: fixation_num = slider_max
        current_fixations = all_fixations.iloc[:fixation_num]
        
        partial_features = self._recalculate_features_from_fixations(current_fixations)
        prediction_prob = self.model.predict_proba(self.scaler.transform(partial_features))[0]
        prob_correct = prediction_prob[1]
        
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [4, 1]})
        fig.suptitle(f"Gaze Playback for {participant} - {question}", fontsize=16, weight='bold')
        ax1.set_title(f"Displaying Fixations 1 through {fixation_num}/{slider_max}")
        ax1.set_xlim(0, 1920); ax1.set_ylim(1080, 0)
        ax1.set_aspect('equal'); ax1.tick_params(left=False, right=False, bottom=False, top=False, labelleft=False, labelbottom=False)
        ax1.add_patch(patches.Rectangle((0, 0), 1920/2, 1080, facecolor='#e0e0e0'))
        ax1.add_patch(patches.Rectangle((1920/2, 0), 1920/2, 1080, facecolor='#f0f0f0'))
        ax1.text(1920*0.25, 50, "Image A", ha='center', fontsize=14, alpha=0.7)
        ax1.text(1920*0.75, 50, "Image B", ha='center', fontsize=14, alpha=0.7)
        if not current_fixations.empty:
            points = current_fixations[['Fixation point X', 'Fixation point Y']]
            ax1.plot(points['Fixation point X'], points['Fixation point Y'], marker='o', color='grey', alpha=0.5, linestyle='-')
            ax1.scatter(points.iloc[-1]['Fixation point X'], points.iloc[-1]['Fixation point Y'], s=200, c='red', zorder=10, edgecolors='black', lw=2)
        
        ax2.set_xlim(0, 1); ax2.set_yticks([])
        ax2.set_title("Live Prediction Confidence (Answer is 'Correct')")
        bar_color = 'green' if prob_correct > 0.5 else 'red'
        ax2.barh([0], [prob_correct], color=bar_color, height=0.5, edgecolor='black')
        ax2.axvline(0.5, color='black', linestyle='--', linewidth=1)
        ax2.text(prob_correct, 0, f" {prob_correct:.1%} ", va='center', ha='left' if prob_correct < 0.9 else 'right', color='white', weight='bold', fontsize=12)
        plt.tight_layout(rect=[0, 0, 1, 0.95])
        
        trial_info = self.combined_data[(self.combined_data['participant_id'] == str(participant)) & (self.combined_data['Question'] == question)].iloc[0]
        summary_text = f"**Actual Answer:** `{trial_info['Answer_Correctness']}`"
        
        return summary_text, fig, gr.Slider(maximum=slider_max, value=fixation_num, interactive=True, step=1, minimum=0)
    
    def analyze_rq1_metric(self, metric):
        if not metric or metric not in self.combined_data.columns: return None, "Metric not found."
        correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
        incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
        if len(correct) < 2 or len(incorrect) < 2: return None, "Not enough data for both groups to compare."
        t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
        fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout()
        summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}"""
        return fig, summary
    
    def update_question_dropdown(self, participant):
        """Dynamically updates the question dropdown based on the selected participant."""
        valid_questions = self.valid_playback_trials.get(participant, [])
        return gr.Dropdown(choices=sorted(valid_questions), interactive=True, value=None, label="2. Select a Question")

    def handle_new_trial_selection(self, participant, question):
        """Called when a new trial is selected. Resets the view to the first fixation."""
        if not participant or not question:
            return "Select a trial to begin.", None, gr.Slider(value=0, interactive=False)
        initial_fixation_num = 1
        return self.generate_gaze_playback(participant, question, initial_fixation_num)

# --- DATA SETUP & GRADIO APP ---
def setup_and_load_data():
    repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
    repo_dir = "GenAIEyeTrackingCleanedDataset"
    if not os.path.exists(repo_dir): 
        print(f"Cloning repository {repo_url}...")
        git.Repo.clone_from(repo_url, repo_dir)
    else: 
        print("Data repository already exists.")
    base_path = repo_dir 
    response_file_path = os.path.join(repo_dir, "GenAI Response.xlsx")
    analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file_path)
    return analyzer

analyzer = setup_and_load_data()

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
    with gr.Tabs():
        with gr.TabItem("πŸ“Š RQ1: Viewing Time vs. Correctness"):
            with gr.Row():
                with gr.Column(scale=1):
                    rq1_metric_dropdown=gr.Dropdown(choices=analyzer.time_metrics, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
                    rq1_summary_output=gr.Markdown(label="Statistical Summary")
                with gr.Column(scale=2):
                    rq1_plot_output=gr.Plot(label="Metric Comparison")
        
        with gr.TabItem("πŸ€– RQ2: Predicting Correctness from Gaze"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("#### Tune Model Hyperparameters")
                    rq2_test_size_slider=gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
                    rq2_estimators_slider=gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees")
                    rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.")
                with gr.Column(scale=2):
                    rq2_summary_output=gr.Markdown(label="Model Performance Summary")
                    rq2_table_output=gr.Dataframe(label="Classification Report", interactive=False)
                    rq2_plot_output=gr.Plot(label="Feature Importance")

        with gr.TabItem("πŸ‘οΈ Gaze Playback & Real-Time Prediction"):
            gr.Markdown("### See the Prediction Evolve with Every Glance!")
            with gr.Row():
                with gr.Column(scale=1):
                    playback_participant=gr.Dropdown(choices=analyzer.valid_playback_participants, label="1. Select a Participant")
                    playback_question=gr.Dropdown(choices=[], label="2. Select a Question", interactive=False)
                    gr.Markdown("3. Use the slider to play back fixations one by one.")
                    playback_slider=gr.Slider(minimum=0, maximum=1, step=1, value=0, label="Fixation Number", interactive=False)
                    playback_summary=gr.Markdown(label="Trial Info")
                with gr.Column(scale=2):
                    playback_plot=gr.Plot(label="Gaze Playback & Live Prediction")

    # --- WIRING FOR ALL TABS ---
    outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status]
    outputs_playback = [playback_summary, playback_plot, playback_slider]
    
    rq1_metric_dropdown.change(fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq1_summary_output])
    
    train_event = rq2_test_size_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
    rq2_estimators_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
    
    playback_participant.change(
        fn=analyzer.update_question_dropdown, 
        inputs=playback_participant, 
        outputs=playback_question
    )

    playback_question.change(
        fn=analyzer.handle_new_trial_selection, 
        inputs=[playback_participant, playback_question], 
        outputs=outputs_playback
    )
    
    playback_slider.release(
        fn=analyzer.generate_gaze_playback, 
        inputs=[playback_participant, playback_question, playback_slider], 
        outputs=outputs_playback
    )

    # Pre-load the initial state of the dashboard
    def initial_load():
        # Load the first tab's content
        rq1_fig, rq1_summary = analyzer.analyze_rq1_metric(analyzer.time_metrics[0] if analyzer.time_metrics else None)
        
        # Train the initial model for the second tab
        model_summary, report_df, feature_fig, status_md = analyzer.run_prediction_model(0.3, 100)
        
        # Return all the values needed to populate the outputs on load
        return {
            rq1_plot_output: rq1_fig,
            rq1_summary_output: rq1_summary,
            rq2_summary_output: model_summary,
            rq2_table_output: report_df,
            rq2_plot_output: feature_fig,
            rq2_status: status_md
        }

    demo.load(
        fn=initial_load,
        outputs=[
            rq1_plot_output, rq1_summary_output, 
            rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status
        ]
    )

if __name__ == "__main__":
    demo.launch()