File size: 4,099 Bytes
1ce9268 db5dc55 1ce9268 db5dc55 e2ce7fb db5dc55 39d718d db5dc55 ed99672 db5dc55 39d718d db5dc55 109dd8a db5dc55 109dd8a db5dc55 109dd8a db5dc55 781246e db5dc55 781246e db5dc55 781246e db5dc55 39d718d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
title: README
emoji: 🐢
colorFrom: purple
colorTo: gray
sdk: static
pinned: false
---
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
<p class="lg:col-span-3">
Intel and Hugging Face are working together to democratize machine learning, making the latest and greatest models from Hugging Face run fast and efficiently on Intel devices. To make this acceleration accessible to the global AI community, Intel is proud to sponsor the <strong>free and accelerated inference of over 80,000 open source models on Hugging Face</strong>, powered by <a href="https://www.intel.fr/content/www/fr/fr/products/details/processors/xeon.html" class="underline" data-ga-category="intel-org" data-ga-action="clicked partner link" data-ga-label="xeon link">Intel Xeon Ice Lake processors</a> in the Hugging Face Inference API. Intel Xeon Ice Lake provides up to <a href="https://huggingface.co/blog/infinity-cpu-performance" class="underline" data-ga-category="intel-org" data-ga-action="clicked partner link" data-ga-label="acceleration">34% acceleration for transformer model inference</a>.<br/><br/>
<strong>Try it out today</strong> on any Hugging Face model, right from the model page, using the Inference Widget!
</p>
<a
href="https://huggingface.co/blog/intel"
class="block overflow-hidden group"
>
<div
class="w-full h-40 object-cover mb-10 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
>
<img
alt=""
src="https://cdn-media.huggingface.co/marketing/intel-page/Intel-Hugging-Face-alt-version2-org-page.png"
class="w-40"
/>
</div>
<div class="underline">Learn more about Hugging Face collaboration with Intel AI</div>
</a>
<a
href="https://huggingface.co/blog/openvino"
class="block overflow-hidden group"
>
<div
class="w-full h-40 object-cover mb-10 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
>
<img
alt=""
src="/blog/assets/113_openvino/thumbnail.png"
class="w-40"
/>
</div>
<div class="underline">Accelerate your models with 🤗 Optimum Intel and OpenVINO</div>
</a>
<a
href="https://github.com/huggingface/optimum"
class="block overflow-hidden group"
>
<div
class="w-full h-40 object-cover mb-10 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
>
<img
alt=""
src="/blog/assets/25_hardware_partners_program/carbon_inc_quantizer.png"
class="w-40"
/>
</div>
<div class="underline">Quantize Transformers with Intel Neural Compressor and Optimum</div>
</a>
<div class="lg:col-span-3">
<p class="mb-2">
Intel provides a complete foundation for accelerated AI with the Intel Xeon Scalable CPU platform and a wide range of hardware-optimized AI software tools, frameworks, and libraries. With the <a href="https://github.com/huggingface/optimum-intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked optimum intel" data-ga-label="optimum intel">Optimum-Intel library</a>, Intel and Hugging Face are making it easy for Hugging Face users to get the best performance for their models on Intel Xeon processors, leveraging acceleration libraries including Intel Neural Compressor and OpenVINO.
<p>
To learn more about the partnership and Intel AI tools, check out these resources:
</p>
<ul>
<li class="ml-6"><a href="https://huggingface.co/hardware/intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked partner page" data-ga-label="partner page">Intel AI + Hugging Face partner page</a></li>
<li class="ml-6"><a href="https://github.com/huggingface/optimum-intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked optimum intel" data-ga-label="optimum intel">🤗 Optimum-Intel library</a></li>
<li class="ml-6"><a href="https://github.com/IntelAI" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel ai github" data-ga-label="intel ai github">Intel AI GitHub</a></li>
</ul>
</div>
</div> |