Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import PIL | |
import tensorflow as tf | |
from tensorflow import keras | |
def predict(img): | |
input = np.array(img, dtype='float32') / 255 | |
sepia_filter = np.array([[.393, .769, .189], [.349, .686, .168], [.272, .534, .131]]) | |
sepia_img = input.dot(sepia_filter.T) | |
sepia_img /= sepia_img.max() | |
mask = np.argmax(model.predict(np.expand_dims(input, axis=0)), axis=-1)[0] | |
result = np.copy(input) | |
for r in range(result.shape[0]): | |
for c in range(result.shape[1]): | |
if mask[r, c] != 1: | |
result[r, c] = sepia_img[r, c] | |
return PIL.Image.fromarray(np.uint8(result*255)) | |
model = keras.models.load_model('model') | |
iface = gr.Interface(predict,\ | |
inputs = gr.Image(shape=(256, 256)),\ | |
outputs = gr.Image(shape=(256, 256), image_mode='rgb'),\ | |
examples = ["examples/english_setter_78.jpg",\ | |
"examples/Ragdoll_60.jpg",\ | |
"examples/pomeranian_74.jpg",\ | |
"examples/Persian_137.jpg",\ | |
"examples/saint_bernard_136.jpg"]) | |
iface.launch() |