import gradio from transformers import pipeline """Predicts the probability of pneumonia given a chest x-ray image.""" _pipeline = pipeline(task="image-classification", model="nickmuchi/vit-finetuned-chest-xray-pneumonia") def predict(image): predictions = _pipeline(image) return {p["label"]: p["score"] for p in predictions} demo = gradio.Interface( fn=predict, inputs=gradio.inputs.Image(label="Upload lung x-ray image", type="filepath"), outputs=gradio.outputs.Label(num_top_classes=2), title="Pneumonia Probability", examples = ["examples/xray1.png", "examples/xray2.jpg"] ) demo.launch()