Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import torch
|
@@ -12,7 +11,7 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
model_id = "
|
16 |
# pipe = pipeline("automatic-speech-recognition", model=model_id)
|
17 |
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
@@ -22,12 +21,19 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze
|
|
22 |
processor = SpeechT5Processor.from_pretrained(model_id)
|
23 |
|
24 |
replacements = [
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
]
|
32 |
|
33 |
def cleanup_text(text):
|
@@ -43,7 +49,7 @@ def synthesize_speech(text):
|
|
43 |
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
|
44 |
|
45 |
def translate(audio):
|
46 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
47 |
return outputs["text"]
|
48 |
|
49 |
|
@@ -61,13 +67,13 @@ def speech_to_speech_translation(audio):
|
|
61 |
return 16000, synthesised_speech
|
62 |
|
63 |
|
64 |
-
|
65 |
title = "Cascaded STST"
|
66 |
description = """
|
67 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
68 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in
|
69 |

|
70 |
"""
|
|
|
71 |
demo = gr.Blocks()
|
72 |
|
73 |
mic_translate = gr.Interface(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
11 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
|
12 |
|
13 |
# load text-to-speech checkpoint and speaker embeddings
|
14 |
+
model_id = "Sandiago21/speecht5_finetuned_facebook_voxpopuli_spanish" # update with your model id
|
15 |
# pipe = pipeline("automatic-speech-recognition", model=model_id)
|
16 |
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
|
21 |
processor = SpeechT5Processor.from_pretrained(model_id)
|
22 |
|
23 |
replacements = [
|
24 |
+
("á", "a"),
|
25 |
+
("ç", "c"),
|
26 |
+
("è", "e"),
|
27 |
+
("ì", "i"),
|
28 |
+
("í", "i"),
|
29 |
+
("ò", "o"),
|
30 |
+
("ó", "o"),
|
31 |
+
("ù", "u"),
|
32 |
+
("ú", "u"),
|
33 |
+
("š", "s"),
|
34 |
+
("ï", "i"),
|
35 |
+
("ñ", "n"),
|
36 |
+
("ü", "u"),
|
37 |
]
|
38 |
|
39 |
def cleanup_text(text):
|
|
|
49 |
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
|
50 |
|
51 |
def translate(audio):
|
52 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "spanish"})
|
53 |
return outputs["text"]
|
54 |
|
55 |
|
|
|
67 |
return 16000, synthesised_speech
|
68 |
|
69 |
|
|
|
70 |
title = "Cascaded STST"
|
71 |
description = """
|
72 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Spanish. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_facebook_voxpopuli_spanish](https://huggingface.co/Sandiago21/speecht5_finetuned_facebook_voxpopuli_spanish) checkpoint for text-to-speech, which is based on Microsoft's
|
73 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Spanish Audio dataset:
|
74 |

|
75 |
"""
|
76 |
+
|
77 |
demo = gr.Blocks()
|
78 |
|
79 |
mic_translate = gr.Interface(
|