context-probing / app.py
cifkao's picture
Fix Python 3.8 compatibility
ebb68fb
raw
history blame
11.2 kB
from pathlib import Path
from typing import Dict, Hashable
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding, GPT2LMHeadModel, PreTrainedTokenizer
root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
"highlighted_text", path=root_dir / "highlighted_text" / "build"
)
def get_windows_batched(
examples: BatchEncoding,
window_len: int,
start: int = 0,
stride: int = 1,
pad_id: int = 0
) -> BatchEncoding:
return BatchEncoding({
k: [
t[i][j : j + window_len] + [
pad_id if k in ["input_ids", "labels"] else 0
] * (j + window_len - len(t[i]))
for i in range(len(examples["input_ids"]))
for j in range(start, len(examples["input_ids"][i]), stride)
]
for k, t in examples.items()
})
BAD_CHAR = chr(0xfffd)
def ids_to_readable_tokens(tokenizer, ids, strip_whitespace=False):
cur_ids = []
result = []
for idx in ids:
cur_ids.append(idx)
decoded = tokenizer.decode(cur_ids)
if BAD_CHAR not in decoded:
if strip_whitespace:
decoded = decoded.strip()
result.append(decoded)
del cur_ids[:]
else:
result.append("")
return result
def nll_score(logprobs, labels):
if logprobs.shape[-1] == 1:
return -logprobs.squeeze(-1)
else:
return -logprobs[:, torch.arange(len(labels)), labels]
def kl_div_score(logprobs):
log_p = logprobs[
torch.arange(logprobs.shape[1]).clamp(max=logprobs.shape[0] - 1),
torch.arange(logprobs.shape[1])
]
# Compute things in place as much as possible
log_p_minus_log_q = logprobs
del logprobs
log_p_minus_log_q *= -1
log_p_minus_log_q += log_p
# Use np.exp because torch.exp is not implemented for float16
p_np = log_p.numpy()
del log_p
np.exp(p_np, out=p_np)
result = log_p_minus_log_q
result *= torch.as_tensor(p_np)
return result.sum(dim=-1)
compact_layout = st.experimental_get_query_params().get("compact", ["false"]) == ["true"]
if not compact_layout:
st.title("Context length probing")
st.markdown(
"""[📃 Paper](https://arxiv.org/abs/2212.14815) |
[🌍 Website](https://cifkao.github.io/context-probing) |
[🧑‍💻 Code](https://github.com/cifkao/context-probing)
"""
)
generation_mode = st.radio("Mode", ["Standard", "Generation"], horizontal=True) == "Generation"
st.caption(
"In standard mode, we analyze the model's predictions on the input text. "
"In generation mode, we generate a continuation of the input text (prompt) "
"and visualize the contributions of different contexts to each generated token."
)
model_name = st.selectbox("Model", ["distilgpt2", "gpt2", "EleutherAI/gpt-neo-125m"])
metric_name = st.radio(
"Metric", (["KL divergence"] if not generation_mode else []) + ["NLL loss"], index=0, horizontal=True
)
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)
# Make sure the logprobs do not use up more than ~4 GB of memory
MAX_MEM = 4e9 / (torch.finfo(torch.float16).bits / 8)
# Select window lengths such that we are allowed to fill the whole window without running out of memory
# (otherwise the window length is irrelevant); if using NLL, memory is not a consideration, but we want
# to limit runtime
multiplier = tokenizer.vocab_size if metric_name == "KL divergence" else 16384 # arbitrary number
window_len_options = [
w for w in [8, 16, 32, 64, 128, 256, 512, 1024]
if w == 8 or w * (2 * w) * multiplier <= MAX_MEM
]
window_len = st.select_slider(
r"Window size ($c_\text{max}$)",
options=window_len_options,
value=min(128, window_len_options[-1])
)
# Now figure out how many tokens we are allowed to use:
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
max_tokens = int(MAX_MEM / (multiplier * window_len) - window_len)
max_tokens = min(max_tokens, 4096)
max_new_tokens = None
if generation_mode:
max_new_tokens = st.slider(
"Max. number of generated tokens",
min_value=8, max_value=min(1024, max_tokens), value=min(128, max_tokens)
)
DEFAULT_TEXT = """
We present context length probing, a novel explanation technique for causal
language models, based on tracking the predictions of a model as a function of the length of
available context, and allowing to assign differential importance scores to different contexts.
The technique is model-agnostic and does not rely on access to model internals beyond computing
token-level probabilities. We apply context length probing to large pre-trained language models
and offer some initial analyses and insights, including the potential for studying long-range
dependencies.
""".replace("\n", " ").strip()
text = st.text_area(
f"Prompt" if generation_mode else "Input text (≤\u2009{max_tokens} tokens)",
st.session_state.get("input_text", DEFAULT_TEXT),
key="input_text",
)
inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
label_ids = [*input_ids[1:], tokenizer.eos_token_id]
inputs["labels"] = [label_ids]
num_user_tokens = len(input_ids)
if num_user_tokens < 1:
st.error("Please enter at least one token.", icon="🚨")
st.stop()
if not generation_mode and num_user_tokens > max_tokens:
st.error(
f"Your input has {num_user_tokens} tokens. Please enter at most {max_tokens} tokens "
f"or try reducing the window size.",
icon="🚨"
)
st.stop()
with st.spinner("Loading model…"):
model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)
@torch.inference_mode()
def get_logprobs(model, inputs, metric):
logprobs = []
batch_size = 8
num_items = len(inputs["input_ids"])
pbar = st.progress(0)
for i in range(0, num_items, batch_size):
pbar.progress(i / num_items, f"{i}/{num_items}")
batch = {k: v[i:i + batch_size] for k, v in inputs.items()}
batch_logprobs = model(**batch).logits.log_softmax(dim=-1).to(torch.float16)
if metric != "KL divergence":
batch_logprobs = torch.gather(
batch_logprobs, dim=-1, index=batch["labels"][..., None]
)
logprobs.append(batch_logprobs)
logprobs = torch.cat(logprobs, dim=0)
pbar.empty()
return logprobs
@torch.inference_mode()
def generate(model, inputs, metric, window_len, max_new_tokens):
assert metric == "NLL loss"
start = max(0, inputs["input_ids"].shape[1] - window_len + 1)
inputs_window = {k: v[:, start:] for k, v in inputs.items()}
del inputs_window["labels"]
new_ids, logprobs = [], []
eos_idx = None
pbar = st.progress(0)
max_steps = max_new_tokens + window_len - 1
for i in range(max_steps):
pbar.progress(i / max_steps, f"{i}/{max_steps}")
inputs_window["attention_mask"] = torch.ones_like(inputs_window["input_ids"], dtype=torch.long)
logprobs_window = model(**inputs_window).logits.log_softmax(dim=-1).squeeze(0)
if eos_idx is None:
next_token = torch.multinomial(logprobs_window[-1].exp(), num_samples=1).item()
if next_token == tokenizer.eos_token_id or i >= max_new_tokens - 1:
eos_idx = i
else:
next_token = tokenizer.eos_token_id
new_ids.append(next_token)
inputs_window["input_ids"] = torch.cat([inputs_window["input_ids"], torch.tensor([[next_token]])], dim=1)
if inputs_window["input_ids"].shape[1] > window_len:
inputs_window["input_ids"] = inputs_window["input_ids"][:, 1:]
if logprobs_window.shape[0] == window_len:
logprobs.append(
logprobs_window[torch.arange(window_len), inputs_window["input_ids"].squeeze(0)]
)
if eos_idx is not None and i - eos_idx >= window_len - 1:
break
pbar.empty()
return torch.as_tensor(new_ids[:eos_idx + 1]), torch.stack(logprobs)[:, :, None]
@torch.inference_mode()
def run_context_length_probing(
_model: GPT2LMHeadModel,
_tokenizer: PreTrainedTokenizer,
_inputs: Dict[str, torch.Tensor],
window_len: int,
metric: str,
generation_mode: bool,
max_new_tokens: int,
cache_key: Hashable
):
del cache_key
[input_ids] = _inputs["input_ids"]
[label_ids] = _inputs["labels"]
with st.spinner("Running model…"):
if generation_mode:
new_ids, logprobs = generate(
model=_model,
inputs=_inputs.convert_to_tensors("pt"),
metric=metric,
window_len=window_len,
max_new_tokens=max_new_tokens
)
output_ids = [*input_ids, *new_ids]
window_len = logprobs.shape[1]
else:
window_len = min(window_len, len(input_ids))
inputs_sliding = get_windows_batched(
_inputs,
window_len=window_len,
start=0,
pad_id=_tokenizer.eos_token_id
).convert_to_tensors("pt")
logprobs = get_logprobs(model=model, inputs=inputs_sliding, metric=metric)
output_ids = [*input_ids, label_ids[-1]]
num_tgt_tokens = logprobs.shape[0]
with st.spinner("Computing scores…"):
logprobs = logprobs.permute(1, 0, 2)
logprobs = F.pad(logprobs, (0, 0, 0, window_len, 0, 0), value=torch.nan)
logprobs = logprobs.view(-1, logprobs.shape[-1])[:-window_len]
logprobs = logprobs.view(window_len, num_tgt_tokens + window_len - 1, logprobs.shape[-1])
if metric == "NLL loss":
scores = nll_score(logprobs=logprobs, labels=label_ids)
elif metric == "KL divergence":
scores = kl_div_score(logprobs)
del logprobs # possibly destroyed by the score computation to save memory
scores = (-scores).diff(dim=0).transpose(0, 1)
scores = scores.nan_to_num()
scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-6
scores = scores.to(torch.float16)
if generation_mode:
scores = F.pad(scores, (0, 0, max(0, len(input_ids) - window_len + 1), 0), value=0.)
return output_ids, scores
if not generation_mode:
run_context_length_probing = st.cache_data(run_context_length_probing, show_spinner=False)
output_ids, scores = run_context_length_probing(
_model=model,
_tokenizer=tokenizer,
_inputs=inputs,
window_len=window_len,
metric=metric_name,
generation_mode=generation_mode,
max_new_tokens=max_new_tokens,
cache_key=(model_name, text),
)
tokens = ids_to_readable_tokens(tokenizer, output_ids)
st.markdown('<label style="font-size: 14px;">Output</label>', unsafe_allow_html=True)
highlighted_text_component(
tokens=tokens,
scores=scores.tolist(),
prefix_len=len(input_ids) if generation_mode else 0
)