context-probing / app.py
cifkao's picture
Add progress bar, batched inference
e5222c4
raw
history blame
4.04 kB
from enum import Enum
from pathlib import Path
import streamlit as st
import streamlit.components.v1 as components
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding
root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
"highlighted_text", path=root_dir / "highlighted_text" / "build"
)
def get_windows_batched(examples: BatchEncoding, window_len: int, stride: int = 1, pad_id: int = 0) -> BatchEncoding:
return BatchEncoding({
k: [
t[i][j : j + window_len] + [
pad_id if k == "input_ids" else 0
] * (j + window_len - len(t[i]))
for i in range(len(examples["input_ids"]))
for j in range(0, len(examples["input_ids"][i]) - 1, stride)
]
for k, t in examples.items()
})
BAD_CHAR = chr(0xfffd)
def ids_to_readable_tokens(tokenizer, ids, strip_whitespace=False):
cur_ids = []
result = []
for idx in ids:
cur_ids.append(idx)
decoded = tokenizer.decode(cur_ids)
if BAD_CHAR not in decoded:
if strip_whitespace:
decoded = decoded.strip()
result.append(decoded)
del cur_ids[:]
else:
result.append("")
return result
st.header("Context length probing")
model_name = st.selectbox("Model", ["distilgpt2", "gpt2", "EleutherAI/gpt-neo-125m"])
metric_name = st.selectbox("Metric", ["KL divergence", "Cross entropy"], index=1)
window_len = st.select_slider(r"Window size ($c_\text{max}$)", options=[8, 16, 32, 64, 128, 256, 512, 1024], value=512)
text = st.text_area(
"Input text",
"The complex houses married and single soldiers and their families.",
)
if metric_name == "KL divergence":
st.error("KL divergence is not supported yet. Stay tuned!", icon="😭")
st.stop()
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name)
model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)
inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
window_len = min(window_len, len(input_ids))
if len(input_ids) < 2:
st.error("Please enter at least 2 tokens.", icon="🚨")
st.stop()
@st.cache_data(show_spinner=False)
@torch.inference_mode()
def run_context_length_probing(model_name, text, window_len):
assert model.name_or_path == model_name
del text # needed as a cache key but for the computation we access inputs directly
inputs_sliding = get_windows_batched(
inputs,
window_len=window_len,
pad_id=tokenizer.eos_token_id
).convert_to_tensors("pt")
logits = []
pbar = st.progress(0.)
batch_size = 8
num_items = len(inputs_sliding["input_ids"])
for i in range(0, num_items, batch_size):
pbar.progress(i / num_items * 0.9, f"Running model… ({i}/{num_items})")
batch = {k: v[i:i + batch_size] for k, v in inputs_sliding.items()}
logits.append(model(**batch).logits.to(torch.float16))
pbar.progress(0.9, "Computing scores…")
logits = torch.cat(logits, dim=0)
logits = logits.permute(1, 0, 2)
logits = F.pad(logits, (0, 0, 0, window_len, 0, 0), value=torch.nan)
logits = logits.view(-1, logits.shape[-1])[:-window_len]
logits = logits.view(window_len, len(input_ids) + window_len - 2, logits.shape[-1])
scores = logits.to(torch.float32).log_softmax(dim=-1)
scores = scores[:, torch.arange(len(input_ids[1:])), input_ids[1:]]
scores = scores.diff(dim=0).transpose(0, 1)
scores = scores.nan_to_num()
scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-9
scores = scores.to(torch.float16)
pbar.progress(1., "Done!")
return scores
scores = run_context_length_probing(
model_name=model_name,
text=text,
window_len=window_len
)
tokens = ids_to_readable_tokens(tokenizer, input_ids)
highlighted_text_component(tokens=tokens, scores=scores.tolist())