File size: 3,594 Bytes
b253e66
8443315
 
 
 
 
 
 
 
 
b253e66
8443315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b253e66
 
 
fe36eff
228bed3
b253e66
dc0dd95
b253e66
 
 
 
8443315
b253e66
8443315
228bed3
 
 
 
fe36eff
 
 
f962dd0
 
 
 
b6ab215
dd5d2e0
b6ab215
 
f962dd0
b6ab215
 
 
 
 
 
dd5d2e0
 
 
 
 
 
 
8443315
b6ab215
 
 
 
 
 
 
f962dd0
b6ab215
f962dd0
b6ab215
 
 
8443315
b6ab215
8443315
b253e66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from enum import Enum
from pathlib import Path

import streamlit as st
import streamlit.components.v1 as components
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding

root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
    "highlighted_text", path=root_dir / "highlighted_text" / "build"
)

def get_windows_batched(examples: BatchEncoding, window_len: int, stride: int = 1, pad_id: int = 0) -> BatchEncoding:
    return BatchEncoding({
        k: [
            t[i][j : j + window_len] + [
                pad_id if k == "input_ids" else 0
            ] * (j + window_len - len(t[i]))
            for i in range(len(examples["input_ids"]))
            for j in range(0, len(examples["input_ids"][i]) - 1, stride)
        ]
        for k, t in examples.items()
    })

BAD_CHAR = chr(0xfffd)

def ids_to_readable_tokens(tokenizer, ids, strip_whitespace=False):
    cur_ids = []
    result = []
    for idx in ids:
        cur_ids.append(idx)
        decoded = tokenizer.decode(cur_ids)
        if BAD_CHAR not in decoded:
            if strip_whitespace:
                decoded = decoded.strip()
            result.append(decoded)
            del cur_ids[:]
        else:
            result.append("")
    return result

st.header("Context length probing")

with st.form("form"):
    model_name = st.selectbox("Model", ["distilgpt2", "gpt2", "EleutherAI/gpt-neo-125m"])
    metric_name = st.selectbox("Metric", ["KL divergence", "Cross entropy"], index=1)

    window_len = st.select_slider(r"Window size ($c_\text{max}$)", options=[8, 16, 32, 64, 128, 256, 512, 1024], value=512)
    text = st.text_area(
        "Input text",
        "The complex houses married and single soldiers and their families.",
    )

    st.form_submit_button("Submit")

if metric_name == "KL divergence":
    st.error("KL divergence is not supported yet. Stay tuned!", icon="😭")
    st.stop()

tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name)
model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)

inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
window_len = min(window_len, len(input_ids))

@st.cache_data(show_spinner=False)
@torch.inference_mode()
def run_context_length_probing(model_name, text, window_len):
    assert model.name_or_path == model_name
    del text  # needed as a cache key but for the computation we access inputs directly

    inputs_sliding = get_windows_batched(
        inputs,
        window_len=window_len,
        pad_id=tokenizer.eos_token_id
    )

    logits = model(**inputs_sliding.convert_to_tensors("pt")).logits.to(torch.float16)

    logits = logits.permute(1, 0, 2)
    logits = F.pad(logits, (0, 0, 0, window_len, 0, 0), value=torch.nan)
    logits = logits.view(-1, logits.shape[-1])[:-window_len]
    logits = logits.view(window_len, len(input_ids) + window_len - 2, logits.shape[-1])

    scores = logits.to(torch.float32).log_softmax(dim=-1)
    scores = scores[:, torch.arange(len(input_ids[1:])), input_ids[1:]]
    scores = scores.diff(dim=0).transpose(0, 1)
    scores = scores.nan_to_num()
    scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-9
    scores = scores.to(torch.float16)

    return scores

scores = run_context_length_probing(
    model_name=model_name,
    text=text,
    window_len=window_len
)
tokens = ids_to_readable_tokens(tokenizer, input_ids)

highlighted_text_component(tokens=tokens, scores=scores.tolist())