arthrod commited on
Commit
d398a54
Β·
verified Β·
1 Parent(s): 4e2d7cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -470
app.py CHANGED
@@ -1,470 +1,85 @@
1
- import marimo
2
-
3
- __generated_with = "0.9.2"
4
- app = marimo.App()
5
-
6
-
7
- @app.cell
8
- def __():
9
- import marimo as mo
10
-
11
- mo.md("# Welcome to marimo! πŸŒŠπŸƒ")
12
- return (mo,)
13
-
14
-
15
- @app.cell
16
- def __(mo):
17
- slider = mo.ui.slider(1, 22)
18
- return (slider,)
19
-
20
-
21
- @app.cell
22
- def __(mo, slider):
23
- mo.md(
24
- f"""
25
- marimo is a **reactive** Python notebook.
26
-
27
- This means that unlike traditional notebooks, marimo notebooks **run
28
- automatically** when you modify them or
29
- interact with UI elements, like this slider: {slider}.
30
-
31
- {"##" + "πŸƒ" * slider.value}
32
- """
33
- )
34
- return
35
-
36
-
37
- @app.cell(hide_code=True)
38
- def __(mo):
39
- mo.accordion(
40
- {
41
- "Tip: disabling automatic execution": mo.md(
42
- rf"""
43
- marimo lets you disable automatic execution: just go into the
44
- notebook settings and set
45
-
46
- "Runtime > On Cell Change" to "lazy".
47
-
48
- When the runtime is lazy, after running a cell, marimo marks its
49
- descendants as stale instead of automatically running them. The
50
- lazy runtime puts you in control over when cells are run, while
51
- still giving guarantees about the notebook state.
52
- """
53
- )
54
- }
55
- )
56
- return
57
-
58
-
59
- @app.cell(hide_code=True)
60
- def __(mo):
61
- mo.md(
62
- """
63
- Tip: This is a tutorial notebook. You can create your own notebooks
64
- by entering `marimo edit` at the command line.
65
- """
66
- ).callout()
67
- return
68
-
69
-
70
- @app.cell(hide_code=True)
71
- def __(mo):
72
- mo.md(
73
- """
74
- ## 1. Reactive execution
75
-
76
- A marimo notebook is made up of small blocks of Python code called
77
- cells.
78
-
79
- marimo reads your cells and models the dependencies among them: whenever
80
- a cell that defines a global variable is run, marimo
81
- **automatically runs** all cells that reference that variable.
82
-
83
- Reactivity keeps your program state and outputs in sync with your code,
84
- making for a dynamic programming environment that prevents bugs before they
85
- happen.
86
- """
87
- )
88
- return
89
-
90
-
91
- @app.cell(hide_code=True)
92
- def __(changed, mo):
93
- (
94
- mo.md(
95
- f"""
96
- **✨ Nice!** The value of `changed` is now {changed}.
97
-
98
- When you updated the value of the variable `changed`, marimo
99
- **reacted** by running this cell automatically, because this cell
100
- references the global variable `changed`.
101
-
102
- Reactivity ensures that your notebook state is always
103
- consistent, which is crucial for doing good science; it's also what
104
- enables marimo notebooks to double as tools and apps.
105
- """
106
- )
107
- if changed
108
- else mo.md(
109
- """
110
- **🌊 See it in action.** In the next cell, change the value of the
111
- variable `changed` to `True`, then click the run button.
112
- """
113
- )
114
- )
115
- return
116
-
117
-
118
- @app.cell
119
- def __():
120
- changed = False
121
- return (changed,)
122
-
123
-
124
- @app.cell(hide_code=True)
125
- def __(mo):
126
- mo.accordion(
127
- {
128
- "Tip: execution order": (
129
- """
130
- The order of cells on the page has no bearing on
131
- the order in which cells are executed: marimo knows that a cell
132
- reading a variable must run after the cell that defines it. This
133
- frees you to organize your code in the way that makes the most
134
- sense for you.
135
- """
136
- )
137
- }
138
- )
139
- return
140
-
141
-
142
- @app.cell(hide_code=True)
143
- def __(mo):
144
- mo.md(
145
- """
146
- **Global names must be unique.** To enable reactivity, marimo imposes a
147
- constraint on how names appear in cells: no two cells may define the same
148
- variable.
149
- """
150
- )
151
- return
152
-
153
-
154
- @app.cell(hide_code=True)
155
- def __(mo):
156
- mo.accordion(
157
- {
158
- "Tip: encapsulation": (
159
- """
160
- By encapsulating logic in functions, classes, or Python modules,
161
- you can minimize the number of global variables in your notebook.
162
- """
163
- )
164
- }
165
- )
166
- return
167
-
168
-
169
- @app.cell(hide_code=True)
170
- def __(mo):
171
- mo.accordion(
172
- {
173
- "Tip: private variables": (
174
- """
175
- Variables prefixed with an underscore are "private" to a cell, so
176
- they can be defined by multiple cells.
177
- """
178
- )
179
- }
180
- )
181
- return
182
-
183
-
184
- @app.cell(hide_code=True)
185
- def __(mo):
186
- mo.md(
187
- """
188
- ## 2. UI elements
189
-
190
- Cells can output interactive UI elements. Interacting with a UI
191
- element **automatically triggers notebook execution**: when
192
- you interact with a UI element, its value is sent back to Python, and
193
- every cell that references that element is re-run.
194
-
195
- marimo provides a library of UI elements to choose from under
196
- `marimo.ui`.
197
- """
198
- )
199
- return
200
-
201
-
202
- @app.cell
203
- def __(mo):
204
- mo.md("""**🌊 Some UI elements.** Try interacting with the below elements.""")
205
- return
206
-
207
-
208
- @app.cell
209
- def __(mo):
210
- icon = mo.ui.dropdown(["πŸƒ", "🌊", "✨"], value="πŸƒ")
211
- return (icon,)
212
-
213
-
214
- @app.cell
215
- def __(icon, mo):
216
- repetitions = mo.ui.slider(1, 16, label=f"number of {icon.value}: ")
217
- return (repetitions,)
218
-
219
-
220
- @app.cell
221
- def __(icon, repetitions):
222
- icon, repetitions
223
- return
224
-
225
-
226
- @app.cell
227
- def __(icon, mo, repetitions):
228
- mo.md("# " + icon.value * repetitions.value)
229
- return
230
-
231
-
232
- @app.cell(hide_code=True)
233
- def __(mo):
234
- mo.md(
235
- """
236
- ## 3. marimo is just Python
237
-
238
- marimo cells parse Python (and only Python), and marimo notebooks are
239
- stored as pure Python files β€” outputs are _not_ included. There's no
240
- magical syntax.
241
-
242
- The Python files generated by marimo are:
243
-
244
- - easily versioned with git, yielding minimal diffs
245
- - legible for both humans and machines
246
- - formattable using your tool of choice,
247
- - usable as Python scripts, with UI elements taking their default
248
- values, and
249
- - importable by other modules (more on that in the future).
250
- """
251
- )
252
- return
253
-
254
-
255
- @app.cell(hide_code=True)
256
- def __(mo):
257
- mo.md(
258
- """
259
- ## 4. Running notebooks as apps
260
-
261
- marimo notebooks can double as apps. Click the app window icon in the
262
- bottom-right to see this notebook in "app view."
263
-
264
- Serve a notebook as an app with `marimo run` at the command-line.
265
- Of course, you can use marimo just to level-up your
266
- notebooking, without ever making apps.
267
- """
268
- )
269
- return
270
-
271
-
272
- @app.cell(hide_code=True)
273
- def __(mo):
274
- mo.md(
275
- """
276
- ## 5. The `marimo` command-line tool
277
-
278
- **Creating and editing notebooks.** Use
279
-
280
- ```
281
- marimo edit
282
- ```
283
-
284
- in a terminal to start the marimo notebook server. From here
285
- you can create a new notebook or edit existing ones.
286
-
287
-
288
- **Running as apps.** Use
289
-
290
- ```
291
- marimo run notebook.py
292
- ```
293
-
294
- to start a webserver that serves your notebook as an app in read-only mode,
295
- with code cells hidden.
296
-
297
- **Convert a Jupyter notebook.** Convert a Jupyter notebook to a marimo
298
- notebook using `marimo convert`:
299
-
300
- ```
301
- marimo convert your_notebook.ipynb > your_app.py
302
- ```
303
-
304
- **Tutorials.** marimo comes packaged with tutorials:
305
-
306
- - `dataflow`: more on marimo's automatic execution
307
- - `ui`: how to use UI elements
308
- - `markdown`: how to write markdown, with interpolated values and
309
- LaTeX
310
- - `plots`: how plotting works in marimo
311
- - `sql`: how to use SQL
312
- - `layout`: layout elements in marimo
313
- - `fileformat`: how marimo's file format works
314
- - `markdown-format`: for using `.md` files in marimo
315
- - `for-jupyter-users`: if you are coming from Jupyter
316
-
317
- Start a tutorial with `marimo tutorial`; for example,
318
-
319
- ```
320
- marimo tutorial dataflow
321
- ```
322
-
323
- In addition to tutorials, we have examples in our
324
- [our GitHub repo](https://www.github.com/marimo-team/marimo/tree/main/examples).
325
- """
326
- )
327
- return
328
-
329
-
330
- @app.cell(hide_code=True)
331
- def __(mo):
332
- mo.md(
333
- """
334
- ## 6. The marimo editor
335
-
336
- Here are some tips to help you get started with the marimo editor.
337
- """
338
- )
339
- return
340
-
341
-
342
- @app.cell
343
- def __(mo, tips):
344
- mo.accordion(tips)
345
- return
346
-
347
-
348
- @app.cell(hide_code=True)
349
- def __(mo):
350
- mo.md("""## Finally, a fun fact""")
351
- return
352
-
353
-
354
- @app.cell(hide_code=True)
355
- def __(mo):
356
- mo.md(
357
- """
358
- The name "marimo" is a reference to a type of algae that, under
359
- the right conditions, clumps together to form a small sphere
360
- called a "marimo moss ball". Made of just strands of algae, these
361
- beloved assemblages are greater than the sum of their parts.
362
- """
363
- )
364
- return
365
-
366
-
367
- @app.cell(hide_code=True)
368
- def __():
369
- tips = {
370
- "Saving": (
371
- """
372
- **Saving**
373
-
374
- - _Name_ your app using the box at the top of the screen, or
375
- with `Ctrl/Cmd+s`. You can also create a named app at the
376
- command line, e.g., `marimo edit app_name.py`.
377
-
378
- - _Save_ by clicking the save icon on the bottom right, or by
379
- inputting `Ctrl/Cmd+s`. By default marimo is configured
380
- to autosave.
381
- """
382
- ),
383
- "Running": (
384
- """
385
- 1. _Run a cell_ by clicking the play ( β–· ) button on the top
386
- right of a cell, or by inputting `Ctrl/Cmd+Enter`.
387
-
388
- 2. _Run a stale cell_ by clicking the yellow run button on the
389
- right of the cell, or by inputting `Ctrl/Cmd+Enter`. A cell is
390
- stale when its code has been modified but not run.
391
-
392
- 3. _Run all stale cells_ by clicking the play ( β–· ) button on
393
- the bottom right of the screen, or input `Ctrl/Cmd+Shift+r`.
394
- """
395
- ),
396
- "Console Output": (
397
- """
398
- Console output (e.g., `print()` statements) is shown below a
399
- cell.
400
- """
401
- ),
402
- "Creating, Moving, and Deleting Cells": (
403
- """
404
- 1. _Create_ a new cell above or below a given one by clicking
405
- the plus button to the left of the cell, which appears on
406
- mouse hover.
407
-
408
- 2. _Move_ a cell up or down by dragging on the handle to the
409
- right of the cell, which appears on mouse hover.
410
-
411
- 3. _Delete_ a cell by clicking the trash bin icon. Bring it
412
- back by clicking the undo button on the bottom right of the
413
- screen, or with `Ctrl/Cmd+Shift+z`.
414
- """
415
- ),
416
- "Disabling Automatic Execution": (
417
- """
418
- Via the notebook settings (gear icon) or footer panel, you
419
- can disable automatic execution. This is helpful when
420
- working with expensive notebooks or notebooks that have
421
- side-effects like database transactions.
422
- """
423
- ),
424
- "Disabling Cells": (
425
- """
426
- You can disable a cell via the cell context menu.
427
- marimo will never run a disabled cell or any cells that depend on it.
428
- This can help prevent accidental execution of expensive computations
429
- when editing a notebook.
430
- """
431
- ),
432
- "Code Folding": (
433
- """
434
- You can collapse or fold the code in a cell by clicking the arrow
435
- icons in the line number column to the left, or by using keyboard
436
- shortcuts.
437
-
438
- Use the command palette (`Ctrl/Cmd+k`) or a keyboard shortcut to
439
- quickly fold or unfold all cells.
440
- """
441
- ),
442
- "Code Formatting": (
443
- """
444
- If you have [ruff](https://github.com/astral-sh/ruff) installed,
445
- you can format a cell with the keyboard shortcut `Ctrl/Cmd+b`.
446
- """
447
- ),
448
- "Command Palette": (
449
- """
450
- Use `Ctrl/Cmd+k` to open the command palette.
451
- """
452
- ),
453
- "Keyboard Shortcuts": (
454
- """
455
- Open the notebook menu (top-right) or input `Ctrl/Cmd+Shift+h` to
456
- view a list of all keyboard shortcuts.
457
- """
458
- ),
459
- "Configuration": (
460
- """
461
- Configure the editor by clicking the gears icon near the top-right
462
- of the screen.
463
- """
464
- ),
465
- }
466
- return (tips,)
467
-
468
-
469
- if __name__ == "__main__":
470
- app.run()
 
1
+ # =============================================================================
2
+ # Marimo Notebook Template: Lazy Load & Interactively View a Hugging Face Parquet Dataset
3
+ # =============================================================================
4
+ # This template demonstrates how to:
5
+ # β€’ Lazy load a Hugging Face dataset from all directories using a recursive globbing
6
+ # pattern for Parquet files.
7
+ # β€’ Preview the loaded DataFrame along with metadata using a custom command.
8
+ # β€’ Provide an interactive button to expand the DataFrame view.
9
+ # β€’ (Optionally) Read local JSONL files (commented out).
10
+ #
11
+ # Note: According to the Polars documentation, you can read multiple files with:
12
+ # pl.read_parquet("hf://datasets/{username}/{dataset}/{path_to_file}")
13
+ # and globbing patterns such as "**/*.parquet" work to query all files recursively.
14
+ #
15
+ # Install dependencies with:
16
+ # pip install polars marimo
17
+ # =============================================================================
18
+
19
+ import polars as pl
20
+ import marimo as mo # Marimo provides UI and lazy-loading decorators
21
+
22
+ # ------------------------------------------------------------------------------
23
+ # 2. Lazy Load the Dataset
24
+ #
25
+ # Use the recursive globbing pattern "**/*.parquet" to read all Parquet files
26
+ # from all subdirectories on Hugging Face.
27
+ # ------------------------------------------------------------------------------
28
+ dataset_url = "hf://datasets/cicero-im/processed_prompt1/**/*.parquet"
29
+
30
+ @mo.lazy # Use Marimo's lazy decorator to defer data loading until needed.
31
+ def load_dataset():
32
+ # Load all Parquet files matching the recursive pattern.
33
+ df = pl.read_parquet(dataset_url)
34
+ # Uncomment the next line to read local JSONL files instead:
35
+ # df = pl.read_ndjson("/local/path/to/*.jsonl")
36
+ return df
37
+
38
+ # Calling load_dataset() returns a lazy DataFrame that is materialized on demand.
39
+ df = load_dataset()
40
+
41
+ # ------------------------------------------------------------------------------
42
+ # 3. Preview the DataFrame
43
+ #
44
+ # Define a custom command to preview the DataFrame with metadata.
45
+ # mo.ui.table is assumed to render a rich interactive table.
46
+ # ------------------------------------------------------------------------------
47
+ def preview_dataframe(df: pl.DataFrame):
48
+ # Display a preview (first few rows) along with metadata (e.g., row count, column names).
49
+ return mo.ui.table(df.head(), metadata=True)
50
+
51
+ # Obtain and render the preview.
52
+ preview = preview_dataframe(df)
53
+ preview
54
+
55
+ # ------------------------------------------------------------------------------
56
+ # 4. Expand the DataFrame for Better Visualization
57
+ #
58
+ # Create an interactive button that, when clicked, renders the full DataFrame
59
+ # with expanded display options (e.g. full width).
60
+ # ------------------------------------------------------------------------------
61
+ expand_option = mo.ui.button(label="Expand Dataframe")
62
+
63
+ @expand_option.on_click
64
+ def expand_dataframe():
65
+ # Render the complete DataFrame view using the UI table component.
66
+ # Adjust display parameters such as width and height.
67
+ mo.ui.table(df, width="100%", height="auto")
68
+
69
+ # Render the expand button.
70
+ expand_option
71
+
72
+ # ------------------------------------------------------------------------------
73
+ # 5. Commented-Out Formulas for Column Selection
74
+ #
75
+ # The following examples (commented out) demonstrate different column selection techniques:
76
+ #
77
+ # Example 1: Select specific columns by name:
78
+ # selected_columns_df = df.select(["column1", "column2"])
79
+ #
80
+ # Example 2: Select all columns except column 'a':
81
+ # all_except_a_df = df.select(pl.exclude("a"))
82
+ #
83
+ # Example 3: Select a range of columns (e.g., from the second to the fourth column):
84
+ # range_columns_df = df.select(pl.col(df.columns[1:4]))
85
+ # ------------------------------------------------------------------------------