# Prerequisites: # pip install torch # pip install docling_core # pip install transformers import spaces import torch from docling_core.types.doc import DoclingDocument from docling_core.types.doc.document import DocTagsDocument from img2table.document import PDF from PIL import Image from transformers import AutoModelForVision2Seq, AutoProcessor DEVICE = "cuda" if torch.cuda.is_available() else "cpu" MAX_PAGES = 2 # Initialize processor and model processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") model = AutoModelForVision2Seq.from_pretrained( "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.bfloat16, _attn_implementation="sdpa", ).to(DEVICE) # Create input messages messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "Convert this page to docling."}, ], }, ] @spaces.GPU(duration=120) def convert_smoldocling(path: str, file_name: str): doc = PDF(path) output_md = "" for image in doc.images[:MAX_PAGES]: # convert ndarray to Image image = Image.fromarray(image) # Prepare inputs prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[image], return_tensors="pt") inputs = inputs.to(DEVICE) # Generate outputs generated_ids = model.generate(**inputs, max_new_tokens=8192 * 2) prompt_length = inputs.input_ids.shape[1] trimmed_generated_ids = generated_ids[:, prompt_length:] doctags = processor.batch_decode( trimmed_generated_ids, skip_special_tokens=False, )[0].lstrip() # Populate document doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) # create a docling document doc = DoclingDocument(name="Document") doc.load_from_doctags(doctags_doc) # export as any format # HTML # doc.save_as_html(output_file) # MD output_md += doc.export_to_markdown() + "\n\n" return output_md, []