taprosoft
fix: monkey patch unimernet
6c0ba50
import functools
import re
from pathlib import Path
from shutil import copy2
import pymupdf
def remove_images_from_markdown(markdown_text):
# remove <image> and ![image](path) from markdown
markdown_text = re.sub(r"<img[^>]*>", "", markdown_text)
markdown_text = re.sub(r"!\[[^\]]*\]\([^)]*\)", "", markdown_text)
return markdown_text
@functools.lru_cache(maxsize=None)
def trim_pages(pdf_path, output_path, start_page=0, trim_pages=5):
doc = pymupdf.open(pdf_path)
parent_dir_name = Path(pdf_path).parent.name
output_file_path = Path(output_path) / f"{parent_dir_name}.pdf"
num_pages = len(doc)
if num_pages > trim_pages:
to_select = list(range(start_page, min(start_page + trim_pages, num_pages)))
doc.select(to_select)
doc.ez_save(output_file_path)
print("Trimmed pdf to with pages", to_select, "path", output_file_path)
else:
copy2(pdf_path, str(output_file_path))
return str(output_file_path)
def patch_unimernet_model():
from unimernet.models.unimernet.encoder_decoder import CustomMBartForCausalLM
# Save the original __init__ method
original_init = CustomMBartForCausalLM.__init__
# Define a new __init__ method
def new_init(self, config):
config._attn_implementation = "eager"
original_init(self, config)
# Monkey patch the __init__ method
CustomMBartForCausalLM.__init__ = new_init
def fix_problematic_imports():
import sys
import types
# Create a fake 'UnimernetModel' class inside a fake 'Unimernet' module
fake_unimernet_module = types.ModuleType(
"magic_pdf.model.sub_modules.mfr.unimernet.Unimernet"
)
fake_unimernet_module.UnimernetModel = type( # type: ignore
"UnimernetModel", (), {}
)
# Register fake module in sys.modules
sys.modules[
"magic_pdf.model.sub_modules.mfr.unimernet.Unimernet"
] = fake_unimernet_module
def prepare_env_mineru():
import json
import os
import nltk
# download nltk data
nltk.download("punkt_tab")
nltk.download("averaged_perceptron_tagger_eng")
home_path = Path.home()
config_path = home_path / "magic-pdf.json"
# skip download if config file exists
if config_path.exists():
print("Config file exists, skipping models download")
return
# download models
os.system(
"wget https://github.com/opendatalab/MinerU/raw/"
"dev/scripts/download_models_hf.py -O download_models_hf.py"
)
os.system("python3 download_models_hf.py")
with open(config_path, "r") as file:
data = json.load(file)
data["device-mode"] = "cuda"
with open(config_path, "w") as file:
json.dump(data, file, indent=4)
os.system(
f"cp -r resources {home_path}/.local/lib/"
"python3.10/site-packages/magic_pdf/resources"
)
# copy OCR model weight
target_model_path = home_path / ".paddleocr"
os.system(f"cp -r paddleocr {target_model_path}")