|
import argparse |
|
|
|
import gradio as gr |
|
|
|
from audiodiffusion import AudioDiffusion |
|
|
|
|
|
def generate_spectrogram_audio_and_loop(model_id): |
|
audio_diffusion = AudioDiffusion(model_id=model_id) |
|
image, (sample_rate, |
|
audio) = audio_diffusion.generate_spectrogram_and_audio_from_audio() |
|
loop = AudioDiffusion.loop_it(audio, sample_rate) |
|
if loop is None: |
|
loop = audio |
|
return image, (sample_rate, audio), (sample_rate, loop) |
|
|
|
|
|
demo = gr.Interface(fn=generate_spectrogram_audio_and_loop, |
|
title="Audio Diffusion", |
|
description="Generate audio using Huggingface diffusers.\ |
|
This takes about 20 minutes without a GPU, so why not make yourself a \ |
|
cup of tea in the meantime? (Or try the teticio/audio-diffusion-ddim-256 \ |
|
model which is faster.)", |
|
inputs=[ |
|
gr.Audio(source="upload",type="filepath"), |
|
gr.Dropdown(label="Model", |
|
choices=[ |
|
"teticio/audio-diffusion-256", |
|
"teticio/audio-diffusion-breaks-256", |
|
"teticio/audio-diffusion-instrumental-hiphop-256", |
|
"teticio/audio-diffusion-ddim-256" |
|
], |
|
value="teticio/audio-diffusion-256") |
|
], |
|
outputs=[ |
|
gr.Image(label="Mel spectrogram", image_mode="L"), |
|
gr.Audio(label="Audio"), |
|
gr.Audio(label="Loop"), |
|
], |
|
allow_flagging="never") |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--port", type=int) |
|
parser.add_argument("--server", type=int) |
|
args = parser.parse_args() |
|
demo.launch(server_name=args.server or "0.0.0.0", server_port=args.port) |
|
|