from fastapi import FastAPI, HTTPException, Request from fastapi.encoders import jsonable_encoder from onnxruntime import InferenceSession from transformers import AutoTokenizer import numpy as np import uvicorn app = FastAPI() # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained( "Xenova/multi-qa-mpnet-base-dot-v1", use_fast=True, legacy=False ) # Load ONNX model session = InferenceSession("model.onnx") def convert_output(value): """Recursively convert numpy types to native Python types""" if isinstance(value, (np.generic, np.ndarray)): if value.size == 1: return float(value.item()) # Convert single values to float return value.astype(float).tolist() # Convert arrays to list elif isinstance(value, list): return [convert_output(x) for x in value] elif isinstance(value, dict): return {k: convert_output(v) for k, v in value.items()} return value @app.post("/api/predict") async def predict(request: Request): try: data = await request.json() text = data.get("text", "") if not text: raise HTTPException(status_code=400, detail="No text provided") # Tokenize input inputs = tokenizer(text) # Run model outputs = session.run(None, { "input_ids": inputs["input_ids"].astype(np.int64), "attention_mask": inputs["attention_mask"].astype(np.int64) }) # Prepare response with converted types response = { "embedding": convert_output(outputs[0]), # Process main output "tokens": tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) } print("embeddings", response["embedding"]) return jsonable_encoder(response) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)