File size: 618 Bytes
32854a5 84f1ee8 1e9ac73 84f505f 1e9ac73 32854a5 befb5c8 84f1ee8 84f505f 32854a5 befb5c8 84f505f 32854a5 befb5c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
from fastapi import FastAPI
from onnxruntime import InferenceSession
import numpy as np
app = FastAPI()
# Load ONNX model only
# session = InferenceSession("model.onnx")
@app.post("/predict")
async def predict(inputs: dict):
# Expect pre-tokenized input from client
##input_ids = np.array(inputs["input_ids"], dtype=np.int64)
#attention_mask = np.array(inputs["attention_mask"], dtype=np.int64)
# Run model
#outputs = session.run(None, {
# "input_ids": input_ids,
# "attention_mask": attention_mask
#})
return "Status ok"
#return {"embedding": outputs[0].tolist()} |