File size: 900 Bytes
1e9ac73
a3e1970
1e9ac73
 
 
 
 
 
 
 
 
 
a3e1970
1e9ac73
 
 
 
 
a3e1970
1e9ac73
 
a3e1970
1e9ac73
 
 
 
 
 
 
 
 
 
a3e1970
1e9ac73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
import numpy as np
import onnxruntime as ort

# Load the ONNX model
session = ort.InferenceSession("model.onnx", providers=["CPUExecutionProvider"])

# Prediction function
def predict(input_ids: list[int], attention_mask: list[int]):
    # Convert to numpy arrays and batch them
    input_ids_np = np.array([input_ids], dtype=np.int64)
    attention_mask_np = np.array([attention_mask], dtype=np.int64)

    # Run the model
    outputs = session.run(None, {
        "input_ids": input_ids_np,
        "attention_mask": attention_mask_np
    })

    # Return raw outputs or post-process as needed
    return outputs

# Expose API endpoint
demo = gr.Interface(
    fn=predict,
    inputs=[
        gr.JSON(label="input_ids"),
        gr.JSON(label="attention_mask")
    ],
    outputs="json",
    allow_flagging="never"
)

app = gr.mount_gradio_app(app=None, blocks=demo, path="/")