import gradio as gr from src.inference import SwinTExCo import cv2 import os from PIL import Image import time import app_config as cfg model = SwinTExCo(weights_path=cfg.ckpt_path) def video_colorization(video_path, ref_image, progress=gr.Progress()): # Initialize video reader video_reader = cv2.VideoCapture(video_path) fps = video_reader.get(cv2.CAP_PROP_FPS) height = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH)) num_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT)) # Initialize reference image ref_image = Image.fromarray(ref_image) # Initialize video writer output_path = os.path.join(os.path.dirname(video_path), os.path.basename(video_path).split('.')[0] + '_colorized.mp4') video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) # Init progress bar for colorized_frame, _ in zip(model.predict_video(video_reader, ref_image), progress.tqdm(range(num_frames), desc="Colorizing video", unit="frames")): video_writer.write(colorized_frame) # for i in progress.tqdm(range(1000)): # time.sleep(0.5) video_writer.release() return output_path app = gr.Interface( fn=video_colorization, inputs=[gr.Video(format="mp4", sources="upload", label="Input video (grayscale)", interactive=True), gr.Image(sources="upload", label="Reference image (color)")], outputs=gr.Video(label="Output video (colorized)"), title=cfg.TITLE, description=cfg.DESCRIPTION ).queue() app.launch()