SwinTExCo / src /utils.py
duongttr's picture
Update RGB2LAB to optimize time
2b79d08
raw
history blame
29.6 kB
import sys
import time
import numpy as np
from PIL import Image
from skimage import color
from skimage.transform import resize
import src.data.functional as F
import torch
from torch import nn
import torch.nn.functional as F_torch
import torchvision.transforms.functional as F_torchvision
from numba import cuda, jit
import math
import torchvision.utils as vutils
from torch.autograd import Variable
import cv2
rgb_from_xyz = np.array(
[
[3.24048134, -0.96925495, 0.05564664],
[-1.53715152, 1.87599, -0.20404134],
[-0.49853633, 0.04155593, 1.05731107],
]
)
l_norm, ab_norm = 1.0, 1.0
l_mean, ab_mean = 50.0, 0
import numpy as np
from PIL import Image
from skimage.transform import resize
import numpy as np
from PIL import Image
from skimage.transform import resize
class SquaredPadding:
def __init__(self, target_size=384, fill_value=0):
self.target_size = target_size
self.fill_value = fill_value
def __call__(self, img, return_pil=True, return_paddings=False, dtype=np.uint8):
if not isinstance(img, np.ndarray):
img = np.array(img)
ndim = len(img.shape)
H, W = img.shape[:2]
if H > W:
H_new, W_new = self.target_size, int(W/H*self.target_size)
# Resize image
img = resize(img, (H_new, W_new), preserve_range=True).astype(dtype)
# Padding image
padded_size = H_new - W_new
if ndim == 3:
paddings = [(0, 0), (padded_size // 2, (padded_size // 2) + (padded_size % 2)), (0,0)]
elif ndim == 2:
paddings = [(0, 0), (padded_size // 2, (padded_size // 2) + (padded_size % 2))]
padded_img = np.pad(img, paddings, mode='constant', constant_values=self.fill_value)
else:
H_new, W_new = int(H/W*self.target_size), self.target_size
# Resize image
img = resize(img, (H_new, W_new), preserve_range=True).astype(dtype)
# Padding image
padded_size = W_new - H_new
if ndim == 3:
paddings = [(padded_size // 2, (padded_size // 2) + (padded_size % 2)), (0, 0), (0,0)]
elif ndim == 2:
paddings = [(padded_size // 2, (padded_size // 2) + (padded_size % 2)), (0, 0)]
padded_img = np.pad(img, paddings, mode='constant', constant_values=self.fill_value)
if return_pil:
padded_img = Image.fromarray(padded_img)
if return_paddings:
return padded_img, paddings
return padded_img
class UnpaddingSquare():
def __call__(self, img, paddings):
if not isinstance(img, np.ndarray):
img = np.array(img)
H, W = img.shape[0], img.shape[1]
(pad_top, pad_bottom), (pad_left, pad_right), _ = paddings
W_ori = W - pad_left - pad_right
H_ori = H - pad_top - pad_bottom
return img[pad_top:pad_top+H_ori, pad_left:pad_left+W_ori, :]
class UnpaddingSquare_Tensor():
def __call__(self, img, paddings):
H, W = img.shape[1], img.shape[2]
(pad_top, pad_bottom), (pad_left, pad_right), _ = paddings
W_ori = W - pad_left - pad_right
H_ori = H - pad_top - pad_bottom
return img[:, pad_top:pad_top+H_ori, pad_left:pad_left+W_ori]
class ResizeFlow(object):
def __init__(self, target_size=(224,224)):
self.target_size = target_size
pass
def __call__(self, flow):
return F_torch.interpolate(flow.unsqueeze(0), self.target_size, mode='bilinear', align_corners=True).squeeze(0)
class SquaredPaddingFlow(object):
def __init__(self, fill_value=0):
self.fill_value = fill_value
def __call__(self, flow):
H, W = flow.size(1), flow.size(2)
if H > W:
# Padding flow
padded_size = H - W
paddings = (padded_size // 2, (padded_size // 2) + (padded_size % 2), 0, 0)
padded_img = F_torch.pad(flow, paddings, value=self.fill_value)
else:
# Padding flow
padded_size = W - H
paddings = (0, 0, padded_size // 2, (padded_size // 2) + (padded_size % 2))
padded_img = F_torch.pad(flow, paddings, value=self.fill_value)
return padded_img
def gray2rgb_batch(l):
# gray image tensor to rgb image tensor
l_uncenter = uncenter_l(l)
l_uncenter = l_uncenter / (2 * l_mean)
return torch.cat((l_uncenter, l_uncenter, l_uncenter), dim=1)
def batch_lab2rgb_transpose_mc(img_l_mc, img_ab_mc, nrow=8):
if isinstance(img_l_mc, Variable):
img_l_mc = img_l_mc.data.cpu()
if isinstance(img_ab_mc, Variable):
img_ab_mc = img_ab_mc.data.cpu()
if img_l_mc.is_cuda:
img_l_mc = img_l_mc.cpu()
if img_ab_mc.is_cuda:
img_ab_mc = img_ab_mc.cpu()
assert img_l_mc.dim() == 4 and img_ab_mc.dim() == 4, "only for batch input"
img_l = img_l_mc * l_norm + l_mean
img_ab = img_ab_mc * ab_norm + ab_mean
pred_lab = torch.cat((img_l, img_ab), dim=1)
grid_lab = vutils.make_grid(pred_lab, nrow=nrow).numpy().astype("float64")
return (np.clip(color.lab2rgb(grid_lab.transpose((1, 2, 0))), 0, 1) * 255).astype("uint8")
def vgg_preprocess(tensor):
# input is RGB tensor which ranges in [0,1]
# output is BGR tensor which ranges in [0,255]
tensor_bgr = torch.cat((tensor[:, 2:3, :, :], tensor[:, 1:2, :, :], tensor[:, 0:1, :, :]), dim=1)
tensor_bgr_ml = tensor_bgr - torch.Tensor([0.40760392, 0.45795686, 0.48501961]).type_as(tensor_bgr).view(1, 3, 1, 1)
return tensor_bgr_ml * 255
def tensor_lab2rgb(input):
"""
n * 3* h *w
"""
input_trans = input.transpose(1, 2).transpose(2, 3) # n * h * w * 3
L, a, b = (
input_trans[:, :, :, 0:1],
input_trans[:, :, :, 1:2],
input_trans[:, :, :, 2:],
)
y = (L + 16.0) / 116.0
x = (a / 500.0) + y
z = y - (b / 200.0)
neg_mask = z.data < 0
z[neg_mask] = 0
xyz = torch.cat((x, y, z), dim=3)
mask = xyz.data > 0.2068966
mask_xyz = xyz.clone()
mask_xyz[mask] = torch.pow(xyz[mask], 3.0)
mask_xyz[~mask] = (xyz[~mask] - 16.0 / 116.0) / 7.787
mask_xyz[:, :, :, 0] = mask_xyz[:, :, :, 0] * 0.95047
mask_xyz[:, :, :, 2] = mask_xyz[:, :, :, 2] * 1.08883
rgb_trans = torch.mm(mask_xyz.view(-1, 3), torch.from_numpy(rgb_from_xyz).type_as(xyz)).view(
input.size(0), input.size(2), input.size(3), 3
)
rgb = rgb_trans.transpose(2, 3).transpose(1, 2)
mask = rgb > 0.0031308
mask_rgb = rgb.clone()
mask_rgb[mask] = 1.055 * torch.pow(rgb[mask], 1 / 2.4) - 0.055
mask_rgb[~mask] = rgb[~mask] * 12.92
neg_mask = mask_rgb.data < 0
large_mask = mask_rgb.data > 1
mask_rgb[neg_mask] = 0
mask_rgb[large_mask] = 1
return mask_rgb
###### loss functions ######
def feature_normalize(feature_in):
feature_in_norm = torch.norm(feature_in, 2, 1, keepdim=True) + sys.float_info.epsilon
feature_in_norm = torch.div(feature_in, feature_in_norm)
return feature_in_norm
# denormalization for l
def uncenter_l(l):
return l * l_norm + l_mean
def get_grid(x):
torchHorizontal = torch.linspace(-1.0, 1.0, x.size(3)).view(1, 1, 1, x.size(3)).expand(x.size(0), 1, x.size(2), x.size(3))
torchVertical = torch.linspace(-1.0, 1.0, x.size(2)).view(1, 1, x.size(2), 1).expand(x.size(0), 1, x.size(2), x.size(3))
return torch.cat([torchHorizontal, torchVertical], 1)
class WarpingLayer(nn.Module):
def __init__(self, device):
super(WarpingLayer, self).__init__()
self.device = device
def forward(self, x, flow):
"""
It takes the input image and the flow and warps the input image according to the flow
Args:
x: the input image
flow: the flow tensor, which is a 4D tensor of shape (batch_size, 2, height, width)
Returns:
The warped image
"""
# WarpingLayer uses F.grid_sample, which expects normalized grid
# we still output unnormalized flow for the convenience of comparing EPEs with FlowNet2 and original code
# so here we need to denormalize the flow
flow_for_grip = torch.zeros_like(flow).to(self.device)
flow_for_grip[:, 0, :, :] = flow[:, 0, :, :] / ((flow.size(3) - 1.0) / 2.0)
flow_for_grip[:, 1, :, :] = flow[:, 1, :, :] / ((flow.size(2) - 1.0) / 2.0)
grid = (get_grid(x).to(self.device) + flow_for_grip).permute(0, 2, 3, 1)
return F_torch.grid_sample(x, grid, align_corners=True)
class CenterPad_threshold(object):
def __init__(self, image_size, threshold=3 / 4):
self.height = image_size[0]
self.width = image_size[1]
self.threshold = threshold
def __call__(self, image):
# pad the image to 16:9
# pad height
I = np.array(image)
# for padded input
height_old = np.size(I, 0)
width_old = np.size(I, 1)
old_size = [height_old, width_old]
height = self.height
width = self.width
I_pad = np.zeros((height, width, np.size(I, 2)))
ratio = height / width
if height_old / width_old == ratio:
if height_old == height:
return Image.fromarray(I.astype(np.uint8))
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
return Image.fromarray(I_resize.astype(np.uint8))
if height_old / width_old > self.threshold:
width_new, height_new = width_old, int(width_old * self.threshold)
height_margin = height_old - height_new
height_crop_start = height_margin // 2
I_crop = I[height_crop_start : (height_crop_start + height_new), :, :]
I_resize = resize(I_crop, [height, width], mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
return Image.fromarray(I_resize.astype(np.uint8))
if height_old / width_old > ratio: # pad the width and crop
new_size = [int(x * width / width_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_height = (height_resize - height) // 2
I_pad[:, :, :] = I_resize[start_height : (start_height + height), :, :]
else: # pad the height and crop
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_width = (width_resize - width) // 2
I_pad[:, :, :] = I_resize[:, start_width : (start_width + width), :]
return Image.fromarray(I_pad.astype(np.uint8))
class Normalize(object):
def __init__(self):
pass
def __call__(self, inputs):
inputs[0:1, :, :] = F.normalize(inputs[0:1, :, :], 50, 1)
inputs[1:3, :, :] = F.normalize(inputs[1:3, :, :], (0, 0), (1, 1))
return inputs
class RGB2Lab(object):
def __init__(self):
pass
def __call__(self, inputs):
normed_inputs = np.float32(inputs) / 255.0
rgb_inputs = cv2.cvtColor(normed_inputs, cv2.COLOR_RGB2LAB)
return rgb_inputs
class ToTensor(object):
def __init__(self):
pass
def __call__(self, inputs):
return F.to_mytensor(inputs)
class CenterPad(object):
def __init__(self, image_size):
self.height = image_size[0]
self.width = image_size[1]
def __call__(self, image):
# pad the image to 16:9
# pad height
I = np.array(image)
# for padded input
height_old = np.size(I, 0)
width_old = np.size(I, 1)
old_size = [height_old, width_old]
height = self.height
width = self.width
I_pad = np.zeros((height, width, np.size(I, 2)))
ratio = height / width
if height_old / width_old == ratio:
if height_old == height:
return Image.fromarray(I.astype(np.uint8))
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
return Image.fromarray(I_resize.astype(np.uint8))
if height_old / width_old > ratio: # pad the width and crop
new_size = [int(x * width / width_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_height = (height_resize - height) // 2
I_pad[:, :, :] = I_resize[start_height : (start_height + height), :, :]
else: # pad the height and crop
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_width = (width_resize - width) // 2
I_pad[:, :, :] = I_resize[:, start_width : (start_width + width), :]
return Image.fromarray(I_pad.astype(np.uint8))
class CenterPadCrop_numpy(object):
"""
pad the image according to the height
"""
def __init__(self, image_size):
self.height = image_size[0]
self.width = image_size[1]
def __call__(self, image, threshold=3 / 4):
# pad the image to 16:9
# pad height
I = np.array(image)
# for padded input
height_old = np.size(I, 0)
width_old = np.size(I, 1)
old_size = [height_old, width_old]
height = self.height
width = self.width
padding_size = width
if image.ndim == 2:
I_pad = np.zeros((width, width))
else:
I_pad = np.zeros((width, width, I.shape[2]))
ratio = height / width
if height_old / width_old == ratio:
return I
# if height_old / width_old > threshold:
# width_new, height_new = width_old, int(width_old * threshold)
# height_margin = height_old - height_new
# height_crop_start = height_margin // 2
# I_crop = I[height_start : (height_start + height_new), :]
# I_resize = resize(
# I_crop, [height, width], mode="reflect", preserve_range=True, clip=False, anti_aliasing=True
# )
# return I_resize
if height_old / width_old > ratio: # pad the width and crop
new_size = [int(x * width / width_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_height = (height_resize - height) // 2
start_height_block = (padding_size - height) // 2
if image.ndim == 2:
I_pad[start_height_block : (start_height_block + height), :] = I_resize[
start_height : (start_height + height), :
]
else:
I_pad[start_height_block : (start_height_block + height), :, :] = I_resize[
start_height : (start_height + height), :, :
]
else: # pad the height and crop
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_width = (width_resize - width) // 2
start_width_block = (padding_size - width) // 2
if image.ndim == 2:
I_pad[:, start_width_block : (start_width_block + width)] = I_resize[:, start_width : (start_width + width)]
else:
I_pad[:, start_width_block : (start_width_block + width), :] = I_resize[
:, start_width : (start_width + width), :
]
crop_start_height = (I_pad.shape[0] - height) // 2
crop_start_width = (I_pad.shape[1] - width) // 2
if image.ndim == 2:
return I_pad[crop_start_height : (crop_start_height + height), crop_start_width : (crop_start_width + width)]
else:
return I_pad[crop_start_height : (crop_start_height + height), crop_start_width : (crop_start_width + width), :]
@jit(nopython=True, nogil=True)
def biInterpolation_cpu(distorted, i, j):
i = np.uint16(i)
j = np.uint16(j)
Q11 = distorted[j, i]
Q12 = distorted[j, i + 1]
Q21 = distorted[j + 1, i]
Q22 = distorted[j + 1, i + 1]
return np.int8(
Q11 * (i + 1 - i) * (j + 1 - j) + Q12 * (i - i) * (j + 1 - j) + Q21 * (i + 1 - i) * (j - j) + Q22 * (i - i) * (j - j)
)
@jit(nopython=True, nogil=True)
def iterSearchShader_cpu(padu, padv, xr, yr, W, H, maxIter, precision):
# print('processing location', (xr, yr))
#
if abs(padu[yr, xr]) < precision and abs(padv[yr, xr]) < precision:
return xr, yr
# Our initialize method in this paper, can see the overleaf for detail
if (xr + 1) <= (W - 1):
dif = padu[yr, xr + 1] - padu[yr, xr]
else:
dif = padu[yr, xr] - padu[yr, xr - 1]
u_next = padu[yr, xr] / (1 + dif)
if (yr + 1) <= (H - 1):
dif = padv[yr + 1, xr] - padv[yr, xr]
else:
dif = padv[yr, xr] - padv[yr - 1, xr]
v_next = padv[yr, xr] / (1 + dif)
i = xr - u_next
j = yr - v_next
i_int = int(i)
j_int = int(j)
# The same as traditional iterative search method
for _ in range(maxIter):
if not 0 <= i <= (W - 1) or not 0 <= j <= (H - 1):
return i, j
u11 = padu[j_int, i_int]
v11 = padv[j_int, i_int]
u12 = padu[j_int, i_int + 1]
v12 = padv[j_int, i_int + 1]
int1 = padu[j_int + 1, i_int]
v21 = padv[j_int + 1, i_int]
int2 = padu[j_int + 1, i_int + 1]
v22 = padv[j_int + 1, i_int + 1]
u = (
u11 * (i_int + 1 - i) * (j_int + 1 - j)
+ u12 * (i - i_int) * (j_int + 1 - j)
+ int1 * (i_int + 1 - i) * (j - j_int)
+ int2 * (i - i_int) * (j - j_int)
)
v = (
v11 * (i_int + 1 - i) * (j_int + 1 - j)
+ v12 * (i - i_int) * (j_int + 1 - j)
+ v21 * (i_int + 1 - i) * (j - j_int)
+ v22 * (i - i_int) * (j - j_int)
)
i_next = xr - u
j_next = yr - v
if abs(i - i_next) < precision and abs(j - j_next) < precision:
return i, j
i = i_next
j = j_next
# if the search doesn't converge within max iter, it will return the last iter result
return i_next, j_next
@jit(nopython=True, nogil=True)
def iterSearch_cpu(distortImg, resultImg, padu, padv, W, H, maxIter=5, precision=1e-2):
for xr in range(W):
for yr in range(H):
# (xr, yr) is the point in result image, (i, j) is the search result in distorted image
i, j = iterSearchShader_cpu(padu, padv, xr, yr, W, H, maxIter, precision)
# reflect the pixels outside the border
if i > W - 1:
i = 2 * W - 1 - i
if i < 0:
i = -i
if j > H - 1:
j = 2 * H - 1 - j
if j < 0:
j = -j
# Bilinear interpolation to get the pixel at (i, j) in distorted image
resultImg[yr, xr, 0] = biInterpolation_cpu(
distortImg[:, :, 0],
i,
j,
)
resultImg[yr, xr, 1] = biInterpolation_cpu(
distortImg[:, :, 1],
i,
j,
)
resultImg[yr, xr, 2] = biInterpolation_cpu(
distortImg[:, :, 2],
i,
j,
)
return None
def forward_mapping_cpu(source_image, u, v, maxIter=5, precision=1e-2):
"""
warp the image according to the forward flow
u: horizontal
v: vertical
"""
H = source_image.shape[0]
W = source_image.shape[1]
distortImg = np.array(np.zeros((H + 1, W + 1, 3)), dtype=np.uint8)
distortImg[0:H, 0:W] = source_image[0:H, 0:W]
distortImg[H, 0:W] = source_image[H - 1, 0:W]
distortImg[0:H, W] = source_image[0:H, W - 1]
distortImg[H, W] = source_image[H - 1, W - 1]
padu = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padu[0:H, 0:W] = u[0:H, 0:W]
padu[H, 0:W] = u[H - 1, 0:W]
padu[0:H, W] = u[0:H, W - 1]
padu[H, W] = u[H - 1, W - 1]
padv = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padv[0:H, 0:W] = v[0:H, 0:W]
padv[H, 0:W] = v[H - 1, 0:W]
padv[0:H, W] = v[0:H, W - 1]
padv[H, W] = v[H - 1, W - 1]
resultImg = np.array(np.zeros((H, W, 3)), dtype=np.uint8)
iterSearch_cpu(distortImg, resultImg, padu, padv, W, H, maxIter, precision)
return resultImg
class Distortion_with_flow_cpu(object):
"""Elastic distortion"""
def __init__(self, maxIter=3, precision=1e-3):
self.maxIter = maxIter
self.precision = precision
def __call__(self, inputs, dx, dy):
inputs = np.array(inputs)
shape = inputs.shape[0], inputs.shape[1]
remap_image = forward_mapping_cpu(inputs, dy, dx, maxIter=self.maxIter, precision=self.precision)
return Image.fromarray(remap_image)
@cuda.jit(device=True)
def biInterpolation_gpu(distorted, i, j):
i = int(i)
j = int(j)
Q11 = distorted[j, i]
Q12 = distorted[j, i + 1]
Q21 = distorted[j + 1, i]
Q22 = distorted[j + 1, i + 1]
return np.int8(
Q11 * (i + 1 - i) * (j + 1 - j) + Q12 * (i - i) * (j + 1 - j) + Q21 * (i + 1 - i) * (j - j) + Q22 * (i - i) * (j - j)
)
@cuda.jit(device=True)
def iterSearchShader_gpu(padu, padv, xr, yr, W, H, maxIter, precision):
# print('processing location', (xr, yr))
#
if abs(padu[yr, xr]) < precision and abs(padv[yr, xr]) < precision:
return xr, yr
# Our initialize method in this paper, can see the overleaf for detail
if (xr + 1) <= (W - 1):
dif = padu[yr, xr + 1] - padu[yr, xr]
else:
dif = padu[yr, xr] - padu[yr, xr - 1]
u_next = padu[yr, xr] / (1 + dif)
if (yr + 1) <= (H - 1):
dif = padv[yr + 1, xr] - padv[yr, xr]
else:
dif = padv[yr, xr] - padv[yr - 1, xr]
v_next = padv[yr, xr] / (1 + dif)
i = xr - u_next
j = yr - v_next
i_int = int(i)
j_int = int(j)
# The same as traditional iterative search method
for _ in range(maxIter):
if not 0 <= i <= (W - 1) or not 0 <= j <= (H - 1):
return i, j
u11 = padu[j_int, i_int]
v11 = padv[j_int, i_int]
u12 = padu[j_int, i_int + 1]
v12 = padv[j_int, i_int + 1]
int1 = padu[j_int + 1, i_int]
v21 = padv[j_int + 1, i_int]
int2 = padu[j_int + 1, i_int + 1]
v22 = padv[j_int + 1, i_int + 1]
u = (
u11 * (i_int + 1 - i) * (j_int + 1 - j)
+ u12 * (i - i_int) * (j_int + 1 - j)
+ int1 * (i_int + 1 - i) * (j - j_int)
+ int2 * (i - i_int) * (j - j_int)
)
v = (
v11 * (i_int + 1 - i) * (j_int + 1 - j)
+ v12 * (i - i_int) * (j_int + 1 - j)
+ v21 * (i_int + 1 - i) * (j - j_int)
+ v22 * (i - i_int) * (j - j_int)
)
i_next = xr - u
j_next = yr - v
if abs(i - i_next) < precision and abs(j - j_next) < precision:
return i, j
i = i_next
j = j_next
# if the search doesn't converge within max iter, it will return the last iter result
return i_next, j_next
@cuda.jit
def iterSearch_gpu(distortImg, resultImg, padu, padv, W, H, maxIter=5, precision=1e-2):
start_x, start_y = cuda.grid(2)
stride_x, stride_y = cuda.gridsize(2)
for xr in range(start_x, W, stride_x):
for yr in range(start_y, H, stride_y):
i,j = iterSearchShader_gpu(padu, padv, xr, yr, W, H, maxIter, precision)
if i > W - 1:
i = 2 * W - 1 - i
if i < 0:
i = -i
if j > H - 1:
j = 2 * H - 1 - j
if j < 0:
j = -j
resultImg[yr, xr,0] = biInterpolation_gpu(distortImg[:,:,0], i, j)
resultImg[yr, xr,1] = biInterpolation_gpu(distortImg[:,:,1], i, j)
resultImg[yr, xr,2] = biInterpolation_gpu(distortImg[:,:,2], i, j)
return None
def forward_mapping_gpu(source_image, u, v, maxIter=5, precision=1e-2):
"""
warp the image according to the forward flow
u: horizontal
v: vertical
"""
H = source_image.shape[0]
W = source_image.shape[1]
resultImg = np.array(np.zeros((H, W, 3)), dtype=np.uint8)
distortImg = np.array(np.zeros((H + 1, W + 1, 3)), dtype=np.uint8)
distortImg[0:H, 0:W] = source_image[0:H, 0:W]
distortImg[H, 0:W] = source_image[H - 1, 0:W]
distortImg[0:H, W] = source_image[0:H, W - 1]
distortImg[H, W] = source_image[H - 1, W - 1]
padu = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padu[0:H, 0:W] = u[0:H, 0:W]
padu[H, 0:W] = u[H - 1, 0:W]
padu[0:H, W] = u[0:H, W - 1]
padu[H, W] = u[H - 1, W - 1]
padv = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padv[0:H, 0:W] = v[0:H, 0:W]
padv[H, 0:W] = v[H - 1, 0:W]
padv[0:H, W] = v[0:H, W - 1]
padv[H, W] = v[H - 1, W - 1]
padu = cuda.to_device(padu)
padv = cuda.to_device(padv)
distortImg = cuda.to_device(distortImg)
resultImg = cuda.to_device(resultImg)
threadsperblock = (16, 16)
blockspergrid_x = math.ceil(W / threadsperblock[0])
blockspergrid_y = math.ceil(H / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)
iterSearch_gpu[blockspergrid, threadsperblock](distortImg, resultImg, padu, padv, W, H, maxIter, precision)
resultImg = resultImg.copy_to_host()
return resultImg
class Distortion_with_flow_gpu(object):
def __init__(self, maxIter=3, precision=1e-3):
self.maxIter = maxIter
self.precision = precision
def __call__(self, inputs, dx, dy):
inputs = np.array(inputs)
shape = inputs.shape[0], inputs.shape[1]
remap_image = forward_mapping_gpu(inputs, dy, dx, maxIter=self.maxIter, precision=self.precision)
return Image.fromarray(remap_image)
def read_flow(filename):
"""
read optical flow from Middlebury .flo file
:param filename: name of the flow file
:return: optical flow data in matrix
"""
f = open(filename, "rb")
try:
magic = np.fromfile(f, np.float32, count=1)[0] # For Python3.x
except:
magic = np.fromfile(f, np.float32, count=1) # For Python2.x
data2d = None
if (202021.25 != magic)and(123.25!=magic):
print("Magic number incorrect. Invalid .flo file")
elif (123.25==magic):
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
# print("Reading %d x %d flo file" % (h, w))
data2d = np.fromfile(f, np.float16, count=2 * w * h)
# reshape data into 3D array (columns, rows, channels)
data2d = np.resize(data2d, (h, w, 2))
elif (202021.25 == magic):
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
# print("Reading %d x %d flo file" % (h, w))
data2d = np.fromfile(f, np.float32, count=2 * w * h)
# reshape data into 3D array (columns, rows, channels)
data2d = np.resize(data2d, (h, w, 2))
f.close()
return data2d.astype(np.float32)
class LossHandler:
def __init__(self):
self.loss_dict = {}
self.count_sample = 0
def add_loss(self, key, loss):
if key not in self.loss_dict:
self.loss_dict[key] = 0
self.loss_dict[key] += loss
def get_loss(self, key):
return self.loss_dict[key] / self.count_sample
def count_one_sample(self):
self.count_sample += 1
def reset(self):
self.loss_dict = {}
self.count_sample = 0
class TimeHandler:
def __init__(self):
self.time_handler = {}
def compute_time(self, key):
if key not in self.time_handler:
self.time_handler[key] = time.time()
return None
else:
return time.time() - self.time_handler.pop(key)
def print_num_params(model, is_trainable=False):
model_name = model.__class__.__name__.ljust(30)
if is_trainable:
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"| TRAINABLE | {model_name} | {('{:,}'.format(num_params)).rjust(10)} |")
else:
num_params = sum(p.numel() for p in model.parameters())
print(f"| GENERAL | {model_name} | {('{:,}'.format(num_params)).rjust(10)} |")
return num_params