Spaces:
Sleeping
Sleeping
import gradio as gr | |
from src.inference import SwinTExCo | |
import cv2 | |
import os | |
from PIL import Image | |
import time | |
import app_config as cfg | |
model = SwinTExCo(weights_path=cfg.ckpt_path) | |
def video_colorization(video_path, ref_image, progress=gr.Progress()): | |
# Initialize video reader | |
video_reader = cv2.VideoCapture(video_path) | |
fps = video_reader.get(cv2.CAP_PROP_FPS) | |
height = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
width = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
num_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT)) | |
# Initialize reference image | |
ref_image = Image.fromarray(ref_image) | |
# Initialize video writer | |
output_path = os.path.join(os.path.dirname(video_path), os.path.basename(video_path).split('.')[0] + '_colorized.mp4') | |
video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) | |
# Init progress bar | |
for colorized_frame, _ in zip(model.predict_video(video_reader, ref_image), progress.tqdm(range(num_frames), desc="Colorizing video", unit="frames")): | |
video_writer.write(colorized_frame) | |
# for i in progress.tqdm(range(1000)): | |
# time.sleep(0.5) | |
video_writer.release() | |
return output_path | |
app = gr.Interface( | |
fn=video_colorization, | |
inputs=[gr.Video(format="mp4", sources="upload", label="Input video (grayscale)", interactive=True), | |
gr.Image(sources="upload", label="Reference image (color)")], | |
outputs=gr.Video(label="Output video (colorized)"), | |
title=cfg.TITLE, | |
description=cfg.DESCRIPTION | |
).queue() | |
app.launch() |