File size: 8,159 Bytes
62ef5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# from PIL import Image
# from predictor import predictor
# import torch
# from src.utils import (
#     uncenter_l,
#     tensor_lab2rgb,
# )

import numpy as np
import shutil
import os
import argparse
import torch
import glob
from tqdm import tqdm
from PIL import Image
from collections import OrderedDict
from src.models.vit.config import load_config
import torchvision.transforms as transforms

from src.models.CNN.ColorVidNet import GeneralColorVidNet
from src.models.vit.embed import GeneralEmbedModel
from src.models.CNN.NonlocalNet import GeneralWarpNet
from src.utils import (
    TimeHandler,
    RGB2Lab,
    ToTensor,
    CenterPad,
    Normalize,
    LossHandler,
    WarpingLayer,
    uncenter_l,
    tensor_lab2rgb,
    print_num_params,
    SquaredPadding,
    UnpaddingSquare,
)
from src.models.CNN.FrameColor import frame_colorization
# cur_path="./horse2_ground.webp"
# ref_path="./horse2_ref.jpg"
# las_path="./horse2_ground.webp"
weight_path="./ckp/12/"
out_path = "./output_video/"
root_path = "./EvalDataset"
device="cuda"

shutil.rmtree(out_path)
os.mkdir(out_path)
videos_list=os.listdir(root_path+"/clips/")
# predictor_instance=predictor(model_path=weight_path,device=device)
def load_params(ckpt_file):
    params = torch.load(ckpt_file)
    new_params = []
    for key, value in params.items():
        new_params.append((key, value))
    return OrderedDict(new_params)

embed_net=GeneralEmbedModel(pretrained_model="swin-small", device=device).to(device).eval()
nonlocal_net = GeneralWarpNet(feature_channel=128).to(device).eval()
colornet=GeneralColorVidNet(7).to(device).eval()
embed_net.load_state_dict(
        load_params(
            (glob.glob(os.path.join(weight_path,"embed_net*.pth")))[-1]
        ),strict=False
    )    
nonlocal_net.load_state_dict(
        load_params(
            (glob.glob(os.path.join(weight_path,"nonlocal_net*.pth")))[-1]
        )
    )
colornet.load_state_dict(
        load_params(
            (glob.glob(os.path.join(weight_path,"colornet*.pth")))[-1]
        )
    )

def custom_transform(listTrans,img):
    for trans in listTrans:
        if isinstance(trans,SquaredPadding):
            img,padding=trans(img,return_paddings=True)
        else:
            img=trans(img)
    return img.to(device),padding
# def save_numpy(path:str,ts,module):
#     np_ar=ts.numpy()
#     np.save(path.replace(".jpg","")+"_"+module,np_ar)
transformer=[
                    SquaredPadding(target_size=224),
                    RGB2Lab(),
                    ToTensor(),
                    Normalize(),
                ]
high_resolution=True
center_padder=CenterPad((224,224))
with torch.no_grad():
    for video_name in tqdm(videos_list):
        frames_list=os.listdir(root_path+"/clips/"+video_name)
        frames_list= sorted(frames_list)
        ref_path = root_path+"/ref/"+video_name+"/"
        ref_file = os.listdir(ref_path)[0]
        ref_path = ref_path + ref_file
        I_last_lab_predict = torch.zeros((1,3,224,224)).to(device)
        video_out_path = out_path+"/"+video_name+"/"
        os.mkdir(video_out_path)
        ref_frame_pil_rgb=Image.open(ref_path).convert("RGB")
        I_reference_lab, I_reference_padding= custom_transform(transformer,center_padder(ref_frame_pil_rgb))
        I_reference_lab=torch.unsqueeze(I_reference_lab,0)
        I_reference_l = I_reference_lab[:, 0:1, :, :]
        I_reference_ab = I_reference_lab[:, 1:3, :, :]
        I_reference_rgb = tensor_lab2rgb(torch.cat((uncenter_l(I_reference_l), I_reference_ab), dim=1)).to(device)
        features_B = embed_net(I_reference_rgb)
        for frame_name in frames_list:
            # current_frame_pil_rgb=Image.open(root_path+"/clips/"+video_name+"/"+frame_name).convert("RGB")
            # ref_frame_pil_rgb=Image.open(ref_path).convert("RGB")
            # last_frame_pil_rgb=Image.open(las_path).convert("RGB")

            #=================================using predictor but fail========================
            

            # I_current_lab = predictor_instance.data_transform(current_frame_pil_rgb)
            # I_current_lab = torch.unsqueeze(I_current_lab,0)
            # I_current_l = I_current_lab[:, 0:1, :, :]
            # I_current_ab = I_current_lab[:, 1:3, :, :]

            # # print(I_current_l[0,0,112:122,112:122])

            # # I_last_lab = predictor_instance.data_transform(last_frame_pil_rgb)
            # # I_last_lab = torch.unsqueeze(I_last_lab,0)
            # # I_last_l = I_last_lab[:, 0:1, :, :]
            # # I_last_ab = I_last_lab[:, 1:3, :, :]

            # I_current_lab_predict= predictor_instance(I_current_l=I_current_l,ref_img=ref_frame_pil_rgb,I_last_lab_predict=I_last_lab_predict)
            # I_current_l_predict=I_current_lab_predict[:, 0:1, :, :]
            # I_current_ab_predict=I_current_lab_predict[:, 1:3, :, :]

            # I_current_rgb_predict = tensor_lab2rgb(torch.cat((uncenter_l(I_current_l_predict), I_current_ab_predict), dim=1))

            # image_result2 = Image.fromarray((I_current_rgb_predict[0] * 255).permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8))
            # I_last_lab_predict = I_current_lab_predict
            #=================================using predictor but fail========================
            
            current_frame_pil_rgb=Image.open(root_path+"/clips/"+video_name+"/"+frame_name).convert("RGB")
            im_w,im_h=current_frame_pil_rgb.size
            # ref_frame_pil_rgb.show()
            


            I_current_lab,I_current_padding = custom_transform(transformer,current_frame_pil_rgb)
            I_current_lab=torch.unsqueeze(I_current_lab,0)
            I_current_l = I_current_lab[:, 0:1, :, :]
            I_current_ab = I_current_lab[:, 1:3, :, :]


            
            
            
            # save_numpy(video_out_path+"/"+frame_name,I_current_l,"current_I")
            # save_numpy(video_out_path+"/"+frame_name,I_reference_lab,"reference_lab")
            # save_numpy(video_out_path+"/"+frame_name,I_last_lab_predict,"I_last_lab_predict")
            with torch.no_grad():
                I_current_ab_predict,_ = frame_colorization(
                                IA_l=I_current_l,
                                IB_lab=I_reference_lab,
                                IA_last_lab=I_last_lab_predict,
                                features_B=features_B,
                                embed_net=embed_net,
                                colornet=colornet,
                                nonlocal_net=nonlocal_net,
                                luminance_noise=False,
                                #temperature=1e-10,
                            )
            if high_resolution:
                high_lab=transforms.Compose([
                        SquaredPadding(target_size=max(im_h,im_w)),
                        RGB2Lab(),
                        ToTensor(),
                        Normalize(),
                ])
                # print(im_h)
                # print(im_w)
                high_lab_current = high_lab(current_frame_pil_rgb)
                high_lab_current = torch.unsqueeze(high_lab_current,dim=0).to(device)
                high_l_current = high_lab_current[:, 0:1, :, :]
                high_ab_current = high_lab_current[:, 1:3, :, :]
                upsampler=torch.nn.Upsample(scale_factor=max(im_h,im_w)/224,mode="bilinear")
                high_ab_predict = upsampler(I_current_ab_predict)
                I_predict_rgb = tensor_lab2rgb(torch.cat((uncenter_l(high_l_current), high_ab_predict), dim=1))    
            else:    
                I_predict_rgb = tensor_lab2rgb(torch.cat((uncenter_l(I_current_l), I_current_ab_predict), dim=1))
            # I_predict_rgb = unpadder(I_predict_rgb,I_current_padding)
            image_result2 = Image.fromarray((I_predict_rgb[0] * 255).permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8))
            I_last_lab_predict = torch.cat((I_current_l, I_current_ab_predict), dim=1)
            # save_numpy(video_out_path+"/"+frame_name,I_last_lab_predict,"result_lab")
            image_result2.save(video_out_path+"/"+frame_name)

# image_result2.show()