Spaces:
Build error
Build error
import gradio as gr | |
import pandas as pd | |
from langchain.agents import create_pandas_dataframe_agent | |
from langchain.chat_models import ChatOpenAI | |
import re | |
import json | |
def process_inputs(open_api_key, open_api_model, description, csv_file): | |
# setup agent | |
try: | |
df = pd.read_csv(csv_file.name) | |
df_agent = create_pandas_dataframe_agent( | |
ChatOpenAI( | |
temperature=0, openai_api_key=open_api_key, model=open_api_model | |
), | |
df, | |
verbose=True, | |
) | |
except Exception as e: | |
return print(e) | |
df_agent.agent.llm_chain.prompt.template = ( | |
"Context: " + description + df_agent.agent.llm_chain.prompt.template | |
) | |
# Planning | |
history = {} | |
description = df_agent.run("Describe the data") | |
history["description"] = description | |
planning = df_agent.run( | |
f"Description: {description} Based on this description and the data itself, what kind of analysis can we perform on the data? Return result in bullet points without the bullets, just new lines" | |
) | |
print(planning) | |
# remove non-Alphanumeric characters at the beginning of the string | |
tasks = list( | |
filter( | |
bool, [re.sub(r"^[\W_]+", "", str.strip()) for str in planning.splitlines()] | |
) | |
) | |
history["planning"] = tasks | |
# Perform tasks | |
f = open("result.txt", "a") | |
result = [] | |
for task in tasks: | |
print(f"The task is: {task}") | |
data = df_agent.run(task) | |
result.append(data) | |
f.write(data + "\n") | |
f.close() | |
history["result"] = result | |
plots = df_agent.run( | |
f"Based on the information given below, create some insightful plots using matplotlib, seaborn or plotly with python_repl_ast. Save these plots in the root directory with a relevant name, and return a dict where keys are the name of the files and the values are the insights dervied from the plot. Information about the data is as follows: {history}" | |
) | |
history["plots"] = plots | |
hypothesis = df_agent.run( | |
f"Based on the information, data, and context given, form valid hypothesis for further investigations. Information about the data is as follows: {history}" | |
) | |
history["hypothesis"] = hypothesis | |
history_pretty = json.dump(history, csv_file, indent=2) | |
return f"{history_pretty}" | |
iface = gr.Interface( | |
fn=process_inputs, | |
inputs=[ | |
gr.Textbox(lines=1, label="OpenAI API Key"), | |
gr.Dropdown(["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4"], label="Model"), | |
gr.Textbox(lines=2, label="Brief description of the data"), | |
gr.File(label="Upload CSV Only"), | |
], | |
outputs=gr.Textbox(), | |
) | |
iface.launch() | |