Spaces:
Runtime error
Runtime error
saving to dataset
Browse files- .gitignore +3 -0
- app.py +118 -18
- utils.py +44 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/*
|
2 |
+
data_local/*
|
3 |
+
flagged/*
|
app.py
CHANGED
@@ -2,9 +2,12 @@ import os
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import torchvision
|
|
|
5 |
import torch.nn as nn
|
6 |
import torch.nn.functional as F
|
7 |
import torch.optim as optim
|
|
|
|
|
8 |
|
9 |
|
10 |
n_epochs = 3
|
@@ -13,8 +16,17 @@ batch_size_test = 1000
|
|
13 |
learning_rate = 0.01
|
14 |
momentum = 0.5
|
15 |
log_interval = 10
|
16 |
-
|
17 |
random_seed = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
torch.backends.cudnn.enabled = False
|
19 |
torch.manual_seed(random_seed)
|
20 |
|
@@ -123,6 +135,13 @@ if os.path.exists(optimizer_state_dict):
|
|
123 |
|
124 |
|
125 |
def image_classifier(inp):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
|
127 |
with torch.no_grad():
|
128 |
|
@@ -134,21 +153,102 @@ def image_classifier(inp):
|
|
134 |
confidences.update({s:v})
|
135 |
return confidences
|
136 |
|
137 |
-
TITLE = "MNIST Adversarial: Try to fool the MNIST model"
|
138 |
-
description = """This project is about dynamic adversarial data collection (DADC).
|
139 |
-
The basic idea is to do data collection, but specifically collect “adversarial data”, the kind of data that is difficult for a model to predict correctly.
|
140 |
-
This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label.
|
141 |
-
|
142 |
-
### What to do:
|
143 |
-
- Draw a number from 0-9.
|
144 |
-
- Click `Submit` and see the model's prediciton.
|
145 |
-
- If the model misclassifies it, Flag that example.
|
146 |
-
- This will add your (adversarial) example to a dataset on which the model will be trained later.
|
147 |
-
"""
|
148 |
-
gr.Interface(fn=image_classifier,
|
149 |
-
inputs=gr.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil"),
|
150 |
-
outputs=gr.outputs.Label(num_top_classes=10),
|
151 |
-
allow_flagging="manual",
|
152 |
-
title = TITLE,
|
153 |
-
description=description).launch()
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import torchvision
|
5 |
+
from utils import *
|
6 |
import torch.nn as nn
|
7 |
import torch.nn.functional as F
|
8 |
import torch.optim as optim
|
9 |
+
from huggingface_hub import Repository, upload_file
|
10 |
+
|
11 |
|
12 |
|
13 |
n_epochs = 3
|
|
|
16 |
learning_rate = 0.01
|
17 |
momentum = 0.5
|
18 |
log_interval = 10
|
|
|
19 |
random_seed = 1
|
20 |
+
|
21 |
+
REPOSITORY_DIR = "data"
|
22 |
+
LOCAL_DIR = 'data_local'
|
23 |
+
os.makedirs(LOCAL_DIR,exist_ok=True)
|
24 |
+
|
25 |
+
|
26 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
27 |
+
|
28 |
+
HF_DATASET ="mnist-adversarial-dataset"
|
29 |
+
|
30 |
torch.backends.cudnn.enabled = False
|
31 |
torch.manual_seed(random_seed)
|
32 |
|
|
|
135 |
|
136 |
|
137 |
def image_classifier(inp):
|
138 |
+
"""
|
139 |
+
It takes an image as input and returns a dictionary of class labels and their corresponding
|
140 |
+
confidence scores.
|
141 |
+
|
142 |
+
:param inp: the image to be classified
|
143 |
+
:return: A dictionary of the class index and the confidence value.
|
144 |
+
"""
|
145 |
input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
|
146 |
with torch.no_grad():
|
147 |
|
|
|
153 |
confidences.update({s:v})
|
154 |
return confidences
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
def flag(input_image,correct_result):
|
158 |
+
# take an image, the wrong result, the correct result.
|
159 |
+
# push to dataset.
|
160 |
+
# get size of current dataset
|
161 |
+
|
162 |
+
# Write audio to file
|
163 |
+
metadata_name = get_unique_name()
|
164 |
+
SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
|
165 |
+
os.makedirs(SAVE_FILE_DIR,exist_ok=True)
|
166 |
+
image_output_filename = os.path.join(SAVE_FILE_DIR,'image.png')
|
167 |
+
try:
|
168 |
+
input_image.save(image_output_filename)
|
169 |
+
except Exception:
|
170 |
+
raise Exception(f"Had issues saving PIL image to file")
|
171 |
+
|
172 |
+
# Write metadata.json to file
|
173 |
+
json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl')
|
174 |
+
metadata= {'id':metadata_name,'file_name':'image.png',
|
175 |
+
'correct_number':correct_result
|
176 |
+
}
|
177 |
+
|
178 |
+
dump_json(metadata,json_file_path)
|
179 |
+
|
180 |
+
# Simply upload the audio file and metadata using the hub's upload_file
|
181 |
+
# Upload the image
|
182 |
+
repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'image.png'))
|
183 |
+
|
184 |
+
_ = upload_file(path_or_fileobj = image_output_filename,
|
185 |
+
path_in_repo =repo_image_path,
|
186 |
+
repo_id=f'chrisjay/{HF_DATASET}',
|
187 |
+
repo_type='dataset',
|
188 |
+
token=HF_TOKEN
|
189 |
+
)
|
190 |
+
|
191 |
+
# Upload the metadata
|
192 |
+
repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'metadata.jsonl'))
|
193 |
+
_ = upload_file(path_or_fileobj = json_file_path,
|
194 |
+
path_in_repo =repo_json_path,
|
195 |
+
repo_id=f'chrisjay/{HF_DATASET}',
|
196 |
+
repo_type='dataset',
|
197 |
+
token=HF_TOKEN
|
198 |
+
)
|
199 |
+
|
200 |
+
output = f'<div> Successfully saved to flagged dataset. </div>'
|
201 |
+
return output
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
def main():
|
206 |
+
TITLE = "# MNIST Adversarial: Try to fool this MNIST model"
|
207 |
+
description = """This project is about dynamic adversarial data collection (DADC).
|
208 |
+
The basic idea is to do data collection by collecting “adversarial data”, the kind of data that is difficult for a model to predict correctly.
|
209 |
+
This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label.
|
210 |
+
|
211 |
+
### What to do:
|
212 |
+
- Draw a number from 0-9.
|
213 |
+
- Click `Submit` and see the model's prediciton.
|
214 |
+
- If the model misclassifies it, Flag that example.
|
215 |
+
- This will add your (adversarial) example to a dataset on which the model will be trained later.
|
216 |
+
"""
|
217 |
+
|
218 |
+
MODEL_IS_WRONG = """
|
219 |
+
> Did the model get it wrong? Choose the correct prediction below and flag it.
|
220 |
+
|
221 |
+
When you flag it, the instance is saved to our dataset and the model is trained on it.
|
222 |
+
"""
|
223 |
+
#block = gr.Blocks(css=BLOCK_CSS)
|
224 |
+
block = gr.Blocks()
|
225 |
+
|
226 |
+
with block:
|
227 |
+
gr.Markdown(TITLE)
|
228 |
+
|
229 |
+
with gr.Tabs():
|
230 |
+
gr.Markdown(description)
|
231 |
+
with gr.TabItem('MNIST'):
|
232 |
+
with gr.Row():
|
233 |
+
|
234 |
+
|
235 |
+
image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil")
|
236 |
+
label_output = gr.outputs.Label(num_top_classes=10)
|
237 |
+
|
238 |
+
submit = gr.Button("Submit")
|
239 |
+
gr.Markdown(MODEL_IS_WRONG)
|
240 |
+
number_dropdown = gr.Dropdown(choices=[i for i in range(10)],type='value',default=None,label="What was the correct prediction?")
|
241 |
+
|
242 |
+
flag_btn = gr.Button("Flag")
|
243 |
+
output_result = gr.outputs.HTML()
|
244 |
+
submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
|
245 |
+
flag_btn.click(flag,inputs=[image_input,number_dropdown],outputs=[output_result])
|
246 |
+
|
247 |
+
|
248 |
+
block.launch()
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
main()
|
utils.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import json
|
3 |
+
import hashlib
|
4 |
+
import random
|
5 |
+
import string
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
def get_unique_name():
|
10 |
+
return ''.join([random.choice(string.ascii_letters
|
11 |
+
+ string.digits) for n in range(32)])
|
12 |
+
|
13 |
+
|
14 |
+
def read_json_lines(file):
|
15 |
+
with open(file,'r',encoding="utf8") as f:
|
16 |
+
lines = f.readlines()
|
17 |
+
data=[]
|
18 |
+
for l in lines:
|
19 |
+
data.append(json.loads(l))
|
20 |
+
return data
|
21 |
+
|
22 |
+
|
23 |
+
def json_dump(thing):
|
24 |
+
return json.dumps(thing,
|
25 |
+
ensure_ascii=False,
|
26 |
+
sort_keys=True,
|
27 |
+
indent=None,
|
28 |
+
separators=(',', ':'))
|
29 |
+
|
30 |
+
def get_hash(thing): # stable-hashing
|
31 |
+
return str(hashlib.md5(json_dump(thing).encode('utf-8')).hexdigest())
|
32 |
+
|
33 |
+
|
34 |
+
def dump_json(thing,file):
|
35 |
+
with open(file,'w+',encoding="utf8") as f:
|
36 |
+
json.dump(thing,f)
|
37 |
+
|
38 |
+
def read_json_lines(file):
|
39 |
+
with open(file,'r',encoding="utf8") as f:
|
40 |
+
lines = f.readlines()
|
41 |
+
data=[]
|
42 |
+
for l in lines:
|
43 |
+
data.append(json.loads(l))
|
44 |
+
return data
|