Spaces:
Runtime error
Runtime error
work on test
Browse files
app.py
CHANGED
@@ -102,9 +102,10 @@ def test():
|
|
102 |
correct += pred.eq(target.data.view_as(pred)).sum()
|
103 |
test_loss /= len(test_loader.dataset)
|
104 |
test_losses.append(test_loss)
|
105 |
-
|
106 |
test_loss, correct, len(test_loader.dataset),
|
107 |
-
100. * correct / len(test_loader.dataset))
|
|
|
108 |
|
109 |
|
110 |
|
@@ -153,8 +154,12 @@ def image_classifier(inp):
|
|
153 |
confidences.update({s:v})
|
154 |
return confidences
|
155 |
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
def flag(input_image,correct_result):
|
158 |
# take an image, the wrong result, the correct result.
|
159 |
# push to dataset.
|
160 |
# get size of current dataset
|
@@ -197,8 +202,12 @@ def flag(input_image,correct_result):
|
|
197 |
token=HF_TOKEN
|
198 |
)
|
199 |
|
200 |
-
output = f'<div> Successfully saved to flagged dataset. </div>'
|
201 |
-
|
|
|
|
|
|
|
|
|
202 |
|
203 |
|
204 |
|
@@ -241,8 +250,12 @@ def main():
|
|
241 |
|
242 |
flag_btn = gr.Button("Flag")
|
243 |
output_result = gr.outputs.HTML()
|
|
|
244 |
submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
|
245 |
-
flag_btn.click(flag,inputs=[image_input,number_dropdown],outputs=[output_result])
|
|
|
|
|
|
|
246 |
|
247 |
|
248 |
block.launch()
|
|
|
102 |
correct += pred.eq(target.data.view_as(pred)).sum()
|
103 |
test_loss /= len(test_loader.dataset)
|
104 |
test_losses.append(test_loss)
|
105 |
+
test_metric = '〽Current test metric - Avg. loss: `{:.4f}`, Accuracy: `{}/{}` (`{:.0f}%`)\n'.format(
|
106 |
test_loss, correct, len(test_loader.dataset),
|
107 |
+
100. * correct / len(test_loader.dataset))
|
108 |
+
return test_metric
|
109 |
|
110 |
|
111 |
|
|
|
154 |
confidences.update({s:v})
|
155 |
return confidences
|
156 |
|
157 |
+
def train_and_test():
|
158 |
+
# Train for one epoch and test
|
159 |
+
train(1,network,optimizer)
|
160 |
+
test_metric = test()
|
161 |
|
162 |
+
def flag(input_image,correct_result,train):
|
163 |
# take an image, the wrong result, the correct result.
|
164 |
# push to dataset.
|
165 |
# get size of current dataset
|
|
|
202 |
token=HF_TOKEN
|
203 |
)
|
204 |
|
205 |
+
output = f'<div> ✔ Successfully saved to flagged dataset. </div>'
|
206 |
+
train=True
|
207 |
+
if train:
|
208 |
+
output = f'<div> ✔ Successfully saved to flagged dataset. Training the model on adversarial data! </div>'
|
209 |
+
|
210 |
+
return output,train
|
211 |
|
212 |
|
213 |
|
|
|
250 |
|
251 |
flag_btn = gr.Button("Flag")
|
252 |
output_result = gr.outputs.HTML()
|
253 |
+
to_train = gr.Variable(value=False)
|
254 |
submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
|
255 |
+
flag_btn.click(flag,inputs=[image_input,number_dropdown,to_train],outputs=[output_result,to_train])
|
256 |
+
if to_train.value:
|
257 |
+
import pdb;pdb.set_trace()
|
258 |
+
train_and_test()
|
259 |
|
260 |
|
261 |
block.launch()
|