Spaces:
Runtime error
Runtime error
retry uploading
Browse files- .gitattributes +1 -0
- app.py +154 -0
- files/MNIST/raw/t10k-images-idx3-ubyte +3 -0
- files/MNIST/raw/t10k-images-idx3-ubyte.gz +3 -0
- files/MNIST/raw/t10k-labels-idx1-ubyte +3 -0
- files/MNIST/raw/t10k-labels-idx1-ubyte.gz +3 -0
- files/MNIST/raw/train-images-idx3-ubyte +3 -0
- files/MNIST/raw/train-images-idx3-ubyte.gz +3 -0
- files/MNIST/raw/train-labels-idx1-ubyte +3 -0
- files/MNIST/raw/train-labels-idx1-ubyte.gz +3 -0
- model.pth +3 -0
- optimizer.pth +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*ubyte* filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import torchvision
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.optim as optim
|
8 |
+
|
9 |
+
|
10 |
+
n_epochs = 3
|
11 |
+
batch_size_train = 64
|
12 |
+
batch_size_test = 1000
|
13 |
+
learning_rate = 0.01
|
14 |
+
momentum = 0.5
|
15 |
+
log_interval = 10
|
16 |
+
|
17 |
+
random_seed = 1
|
18 |
+
torch.backends.cudnn.enabled = False
|
19 |
+
torch.manual_seed(random_seed)
|
20 |
+
|
21 |
+
train_loader = torch.utils.data.DataLoader(
|
22 |
+
torchvision.datasets.MNIST('files/', train=True, download=True,
|
23 |
+
transform=torchvision.transforms.Compose([
|
24 |
+
torchvision.transforms.ToTensor(),
|
25 |
+
torchvision.transforms.Normalize(
|
26 |
+
(0.1307,), (0.3081,))
|
27 |
+
])),
|
28 |
+
batch_size=batch_size_train, shuffle=True)
|
29 |
+
|
30 |
+
test_loader = torch.utils.data.DataLoader(
|
31 |
+
torchvision.datasets.MNIST('files/', train=False, download=True,
|
32 |
+
transform=torchvision.transforms.Compose([
|
33 |
+
torchvision.transforms.ToTensor(),
|
34 |
+
torchvision.transforms.Normalize(
|
35 |
+
(0.1307,), (0.3081,))
|
36 |
+
])),
|
37 |
+
batch_size=batch_size_test, shuffle=True)
|
38 |
+
|
39 |
+
|
40 |
+
# Source: https://nextjournal.com/gkoehler/pytorch-mnist
|
41 |
+
class MNIST_Model(nn.Module):
|
42 |
+
def __init__(self):
|
43 |
+
super(MNIST_Model, self).__init__()
|
44 |
+
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
|
45 |
+
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
|
46 |
+
self.conv2_drop = nn.Dropout2d()
|
47 |
+
self.fc1 = nn.Linear(320, 50)
|
48 |
+
self.fc2 = nn.Linear(50, 10)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = F.relu(F.max_pool2d(self.conv1(x), 2))
|
52 |
+
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
|
53 |
+
x = x.view(-1, 320)
|
54 |
+
x = F.relu(self.fc1(x))
|
55 |
+
x = F.dropout(x, training=self.training)
|
56 |
+
x = self.fc2(x)
|
57 |
+
return F.log_softmax(x)
|
58 |
+
|
59 |
+
|
60 |
+
def train(epochs,network,optimizer):
|
61 |
+
|
62 |
+
train_losses=[]
|
63 |
+
network.train()
|
64 |
+
for epoch in range(epochs):
|
65 |
+
for batch_idx, (data, target) in enumerate(train_loader):
|
66 |
+
optimizer.zero_grad()
|
67 |
+
output = network(data)
|
68 |
+
loss = F.nll_loss(output, target)
|
69 |
+
loss.backward()
|
70 |
+
optimizer.step()
|
71 |
+
if batch_idx % log_interval == 0:
|
72 |
+
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
73 |
+
epoch, batch_idx * len(data), len(train_loader.dataset),
|
74 |
+
100. * batch_idx / len(train_loader), loss.item()))
|
75 |
+
train_losses.append(loss.item())
|
76 |
+
|
77 |
+
torch.save(network.state_dict(), 'model.pth')
|
78 |
+
torch.save(optimizer.state_dict(), 'optimizer.pth')
|
79 |
+
|
80 |
+
def test():
|
81 |
+
test_losses=[]
|
82 |
+
network.eval()
|
83 |
+
test_loss = 0
|
84 |
+
correct = 0
|
85 |
+
with torch.no_grad():
|
86 |
+
for data, target in test_loader:
|
87 |
+
output = network(data)
|
88 |
+
test_loss += F.nll_loss(output, target, size_average=False).item()
|
89 |
+
pred = output.data.max(1, keepdim=True)[1]
|
90 |
+
correct += pred.eq(target.data.view_as(pred)).sum()
|
91 |
+
test_loss /= len(test_loader.dataset)
|
92 |
+
test_losses.append(test_loss)
|
93 |
+
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
94 |
+
test_loss, correct, len(test_loader.dataset),
|
95 |
+
100. * correct / len(test_loader.dataset)))
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
random_seed = 1
|
100 |
+
torch.backends.cudnn.enabled = False
|
101 |
+
torch.manual_seed(random_seed)
|
102 |
+
|
103 |
+
network = MNIST_Model()
|
104 |
+
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
|
105 |
+
momentum=momentum)
|
106 |
+
|
107 |
+
|
108 |
+
model_state_dict = 'model.pth'
|
109 |
+
optimizer_state_dict = 'optmizer.pth'
|
110 |
+
|
111 |
+
if os.path.exists(model_state_dict):
|
112 |
+
network_state_dict = torch.load(model_state_dict)
|
113 |
+
network.load_state_dict(network_state_dict)
|
114 |
+
|
115 |
+
if os.path.exists(optimizer_state_dict):
|
116 |
+
optimizer_state_dict = torch.load(optimizer_state_dict)
|
117 |
+
optimizer.load_state_dict(optimizer_state_dict)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
# Train
|
122 |
+
#train(n_epochs,network,optimizer)
|
123 |
+
|
124 |
+
|
125 |
+
def image_classifier(inp):
|
126 |
+
input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
|
127 |
+
with torch.no_grad():
|
128 |
+
|
129 |
+
prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
|
130 |
+
#pred_number = prediction.data.max(1, keepdim=True)[1]
|
131 |
+
sorted_prediction = torch.sort(prediction,descending=True)
|
132 |
+
confidences={}
|
133 |
+
for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
|
134 |
+
confidences.update({s:v})
|
135 |
+
return confidences
|
136 |
+
|
137 |
+
TITLE = "MNIST Adversarial: Try to fool the MNIST model"
|
138 |
+
description = """This project is about dynamic adversarial data collection (DADC).
|
139 |
+
The basic idea is to do data collection, but specifically collect “adversarial data”, the kind of data that is difficult for a model to predict correctly.
|
140 |
+
This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label.
|
141 |
+
|
142 |
+
### What to do:
|
143 |
+
- Draw a number from 0-9.
|
144 |
+
- Click `Submit` and see the model's prediciton.
|
145 |
+
- If the model misclassifies it, Flag that example.
|
146 |
+
- This will add your (adversarial) example to a dataset on which the model will be trained later.
|
147 |
+
"""
|
148 |
+
gr.Interface(fn=image_classifier,
|
149 |
+
inputs=gr.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil"),
|
150 |
+
outputs=gr.outputs.Label(num_top_classes=10),
|
151 |
+
allow_flagging="manual",
|
152 |
+
title = TITLE,
|
153 |
+
description=description).launch()
|
154 |
+
|
files/MNIST/raw/t10k-images-idx3-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fa7898d509279e482958e8ce81c8e77db3f2f8254e26661ceb7762c4d494ce7
|
3 |
+
size 7840016
|
files/MNIST/raw/t10k-images-idx3-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6
|
3 |
+
size 1648877
|
files/MNIST/raw/t10k-labels-idx1-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff7bcfd416de33731a308c3f266cc351222c34898ecbeaf847f06e48f7ec33f2
|
3 |
+
size 10008
|
files/MNIST/raw/t10k-labels-idx1-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6
|
3 |
+
size 4542
|
files/MNIST/raw/train-images-idx3-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba891046e6505d7aadcbbe25680a0738ad16aec93bde7f9b65e87a2fc25776db
|
3 |
+
size 47040016
|
files/MNIST/raw/train-images-idx3-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609
|
3 |
+
size 9912422
|
files/MNIST/raw/train-labels-idx1-ubyte
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65a50cbbf4e906d70832878ad85ccda5333a97f0f4c3dd2ef09a8a9eef7101c5
|
3 |
+
size 60008
|
files/MNIST/raw/train-labels-idx1-ubyte.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c
|
3 |
+
size 28881
|
model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffe16177c76477e22a35b45ac44d3a06f758d07df5ca37379a490ed69f7ff80e
|
3 |
+
size 89871
|
optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea0b9cee5af7847bf896b2c9692b1cf36fe447d67be87d1b98634091f20babe6
|
3 |
+
size 89807
|