Spaces:
Runtime error
Runtime error
save models and metrics to hub
Browse files- .gitignore +4 -1
- app.py +28 -19
- data_mnist +1 -1
.gitignore
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
__pycache__/*
|
2 |
data_local/*
|
3 |
flagged/*
|
4 |
-
data_mnist/*
|
|
|
|
|
|
|
|
1 |
__pycache__/*
|
2 |
data_local/*
|
3 |
flagged/*
|
4 |
+
data_mnist/*
|
5 |
+
model/*
|
6 |
+
model
|
7 |
+
data_mnist
|
app.py
CHANGED
@@ -25,7 +25,10 @@ log_interval = 10
|
|
25 |
random_seed = 1
|
26 |
TRAIN_CUTOFF = 10
|
27 |
WHAT_TO_DO=WHAT_TO_DO.format(num_samples=TRAIN_CUTOFF)
|
28 |
-
|
|
|
|
|
|
|
29 |
REPOSITORY_DIR = "data"
|
30 |
LOCAL_DIR = 'data_local'
|
31 |
os.makedirs(LOCAL_DIR,exist_ok=True)
|
@@ -34,14 +37,21 @@ os.makedirs(LOCAL_DIR,exist_ok=True)
|
|
34 |
|
35 |
|
36 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
37 |
-
|
38 |
HF_DATASET ="mnist-adversarial-dataset"
|
39 |
DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}"
|
|
|
|
|
40 |
repo = Repository(
|
41 |
local_dir="data_mnist", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
42 |
)
|
43 |
repo.git_pull()
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
torch.backends.cudnn.enabled = False
|
46 |
torch.manual_seed(random_seed)
|
47 |
|
@@ -76,7 +86,7 @@ class MNISTAdversarial_Dataset(Dataset):
|
|
76 |
return img, label
|
77 |
|
78 |
class MNISTCorrupted_By_Digit(Dataset):
|
79 |
-
def __init__(self,transform,digit,limit=
|
80 |
self.transform = transform
|
81 |
self.digit = digit
|
82 |
corrupted_dir="./mnist_c"
|
@@ -112,15 +122,13 @@ class MNISTCorrupted_By_Digit(Dataset):
|
|
112 |
|
113 |
return image, label
|
114 |
|
115 |
-
|
116 |
-
|
117 |
class MNISTCorrupted(Dataset):
|
118 |
def __init__(self,transform):
|
119 |
self.transform = transform
|
120 |
corrupted_dir="./mnist_c"
|
121 |
files = [f.name for f in os.scandir(corrupted_dir)]
|
122 |
-
images = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_images.npy'))[:
|
123 |
-
labels = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_labels.npy'))[:
|
124 |
self.data = np.vstack(images)
|
125 |
self.labels = np.hstack(labels)
|
126 |
|
@@ -142,7 +150,6 @@ class MNISTCorrupted(Dataset):
|
|
142 |
return image, label
|
143 |
|
144 |
|
145 |
-
|
146 |
TRAIN_TRANSFORM = torchvision.transforms.Compose([
|
147 |
torchvision.transforms.ToTensor(),
|
148 |
torchvision.transforms.Normalize(
|
@@ -191,8 +198,8 @@ def train(epochs,network,optimizer,train_loader):
|
|
191 |
100. * batch_idx / len(train_loader), loss.item()))
|
192 |
train_losses.append(loss.item())
|
193 |
|
194 |
-
torch.save(network.state_dict(),
|
195 |
-
torch.save(optimizer.state_dict(),
|
196 |
|
197 |
def test():
|
198 |
test_losses=[]
|
@@ -224,19 +231,16 @@ optimizer = optim.SGD(network.parameters(), lr=learning_rate,
|
|
224 |
momentum=momentum)
|
225 |
|
226 |
|
227 |
-
model_state_dict =
|
228 |
-
optimizer_state_dict =
|
229 |
-
|
230 |
-
if os.path.exists(model_state_dict):
|
231 |
network_state_dict = torch.load(model_state_dict)
|
232 |
network.load_state_dict(network_state_dict)
|
233 |
|
234 |
-
if os.path.exists(optimizer_state_dict):
|
235 |
optimizer_state_dict = torch.load(optimizer_state_dict)
|
236 |
optimizer.load_state_dict(optimizer_state_dict)
|
237 |
|
238 |
-
|
239 |
-
|
240 |
# Train
|
241 |
#train(n_epochs,network,optimizer)
|
242 |
|
@@ -291,6 +295,10 @@ def train_and_test():
|
|
291 |
metric_dict[str(i)] = [acc]
|
292 |
|
293 |
dump_json(thing=metric_dict,file=METRIC_PATH)
|
|
|
|
|
|
|
|
|
294 |
return test_metric
|
295 |
|
296 |
def flag(input_image,correct_result,adversarial_number):
|
@@ -355,8 +363,9 @@ def get_number_dict(DATA_DIR):
|
|
355 |
|
356 |
|
357 |
def get_statistics():
|
358 |
-
|
359 |
-
|
|
|
360 |
|
361 |
if os.path.exists(model_state_dict):
|
362 |
network_state_dict = torch.load(model_state_dict)
|
|
|
25 |
random_seed = 1
|
26 |
TRAIN_CUTOFF = 10
|
27 |
WHAT_TO_DO=WHAT_TO_DO.format(num_samples=TRAIN_CUTOFF)
|
28 |
+
MODEL_PATH = 'model'
|
29 |
+
METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json')
|
30 |
+
MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth')
|
31 |
+
OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth')
|
32 |
REPOSITORY_DIR = "data"
|
33 |
LOCAL_DIR = 'data_local'
|
34 |
os.makedirs(LOCAL_DIR,exist_ok=True)
|
|
|
37 |
|
38 |
|
39 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
40 |
+
MODEL_REPO = 'mnist-adversarial-model'
|
41 |
HF_DATASET ="mnist-adversarial-dataset"
|
42 |
DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}"
|
43 |
+
MODEL_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{MODEL_REPO}"
|
44 |
+
|
45 |
repo = Repository(
|
46 |
local_dir="data_mnist", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
47 |
)
|
48 |
repo.git_pull()
|
49 |
|
50 |
+
model_repo = Repository(
|
51 |
+
local_dir=MODEL_PATH, clone_from=MODEL_REPO_URL, use_auth_token=HF_TOKEN
|
52 |
+
)
|
53 |
+
model_repo.git_pull()
|
54 |
+
|
55 |
torch.backends.cudnn.enabled = False
|
56 |
torch.manual_seed(random_seed)
|
57 |
|
|
|
86 |
return img, label
|
87 |
|
88 |
class MNISTCorrupted_By_Digit(Dataset):
|
89 |
+
def __init__(self,transform,digit,limit=500):
|
90 |
self.transform = transform
|
91 |
self.digit = digit
|
92 |
corrupted_dir="./mnist_c"
|
|
|
122 |
|
123 |
return image, label
|
124 |
|
|
|
|
|
125 |
class MNISTCorrupted(Dataset):
|
126 |
def __init__(self,transform):
|
127 |
self.transform = transform
|
128 |
corrupted_dir="./mnist_c"
|
129 |
files = [f.name for f in os.scandir(corrupted_dir)]
|
130 |
+
images = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_images.npy'))[:500] for f in files]
|
131 |
+
labels = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_labels.npy'))[:500] for f in files]
|
132 |
self.data = np.vstack(images)
|
133 |
self.labels = np.hstack(labels)
|
134 |
|
|
|
150 |
return image, label
|
151 |
|
152 |
|
|
|
153 |
TRAIN_TRANSFORM = torchvision.transforms.Compose([
|
154 |
torchvision.transforms.ToTensor(),
|
155 |
torchvision.transforms.Normalize(
|
|
|
198 |
100. * batch_idx / len(train_loader), loss.item()))
|
199 |
train_losses.append(loss.item())
|
200 |
|
201 |
+
torch.save(network.state_dict(), MODEL_WEIGHTS_PATH)
|
202 |
+
torch.save(optimizer.state_dict(), OPTIMIZER_PATH)
|
203 |
|
204 |
def test():
|
205 |
test_losses=[]
|
|
|
231 |
momentum=momentum)
|
232 |
|
233 |
|
234 |
+
model_state_dict = MODEL_WEIGHTS_PATH
|
235 |
+
optimizer_state_dict = OPTIMIZER_PATH
|
236 |
+
model_repo.git_pull()
|
237 |
+
if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict):
|
238 |
network_state_dict = torch.load(model_state_dict)
|
239 |
network.load_state_dict(network_state_dict)
|
240 |
|
|
|
241 |
optimizer_state_dict = torch.load(optimizer_state_dict)
|
242 |
optimizer.load_state_dict(optimizer_state_dict)
|
243 |
|
|
|
|
|
244 |
# Train
|
245 |
#train(n_epochs,network,optimizer)
|
246 |
|
|
|
295 |
metric_dict[str(i)] = [acc]
|
296 |
|
297 |
dump_json(thing=metric_dict,file=METRIC_PATH)
|
298 |
+
|
299 |
+
# Push models and metrics to hub
|
300 |
+
model_repo.push_to_hub()
|
301 |
+
|
302 |
return test_metric
|
303 |
|
304 |
def flag(input_image,correct_result,adversarial_number):
|
|
|
363 |
|
364 |
|
365 |
def get_statistics():
|
366 |
+
model_repo.git_pull()
|
367 |
+
model_state_dict = MODEL_WEIGHTS_PATH
|
368 |
+
optimizer_state_dict = OPTIMIZER_PATH
|
369 |
|
370 |
if os.path.exists(model_state_dict):
|
371 |
network_state_dict = torch.load(model_state_dict)
|
data_mnist
CHANGED
@@ -1 +1 @@
|
|
1 |
-
Subproject commit
|
|
|
1 |
+
Subproject commit 5915a9276e314d92a5b533b5312616b28b9bcee5
|