Spaces:
Runtime error
Runtime error
File size: 13,369 Bytes
7873945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms
from matplotlib.transforms import Affine2D
import math
from matplotlib.patheffects import RendererBase
import matplotlib.patheffects as PathEffects
import seaborn as sns
# Calculate the font size that match the unit length on x-axis or y-axis
def CalculateFontsize(xlim, ylim, ax, fig, rows, cols, unit_scale=1):
# Get axis limits
axXlim = ax.get_xlim()
axYlim = ax.get_ylim()
# Get figure dimensions in pixels
fig_width, fig_height = fig.get_size_inches() * fig.dpi
# Get axis dimensions in pixels
bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
ax_width, ax_height = bbox.width * fig.dpi, bbox.height * fig.dpi
# Calculate font size proportional to axis units
fontsize_x = unit_scale * ax_width / (axXlim[1] - axXlim[0]) / cols * (xlim[1] - xlim[0])
fontsize_y = 0.8 * unit_scale * ax_height / (axYlim[1] - axYlim[0]) / rows * (ylim[1] - ylim[0])
# Use the minimum of the two to keep the font size consistent
fontsize = min(fontsize_x, fontsize_y)
return fontsize
def GetStartEnd(msa, start, end):
length = len(msa[0])
if (start == None):
start = 0
elif (start < 0):
start = length + start
if (end == None):
end = length - 1
elif (end < 0):
end = length + end
return start, end
def GetColorMap(preset = None, msa=None, color_order = None, palette = None):
color_map = {}
if preset in ["dna", "nuc", "nucleotide"]:
color_map['A'] = [0,1,0]
color_map['C'] = [1,165/255,0]
color_map['G'] = [1,0,0]
color_map['T'] = [0.5,0.5,1]
else:
if (color_order != None):
for i,c in enumerate(color_order):
color_map[c] = sns.color_palette(palette)[i]
# The case some of the alphabet color is not specified in the order
for a in msa:
for c in a:
if c not in color_map:
size = len(color_map)
color_map[c] = sns.color_palette(palette)[size]
color_map['-'] = [1,1,1] # white
color_map['.'] = [1,1,1] # white
return color_map
def DrawMSA(msa, seq_names = None, start = None, end = None,
axlim = None, color_map = None, palette=None, ax=None, fig=None,
show_char=True):
# Get the canvas attributes.
ax = ax or plt.gca()
fig = fig or ax.get_figure()
renderer = fig.canvas.get_renderer()
height = len(msa)
length = len(msa[0])
# start, end: draw the [start,end] (both inclusive) region of the MSA
start, end = GetStartEnd(msa, start, end)
if (axlim == None):
fontsize = CalculateFontsize(ax.get_xlim(), ax.get_ylim(), ax, fig, height, end - start + 1)
else:
fontsize = CalculateFontsize(axlim[0], axlim[1], ax, fig, height, end - start + 1)
color_map = color_map or GetColorMap(msa=msa, color_order=None, palette=palette)
lengthUnit = 1 / (end - start + 1)
heightUnit = 1 / height
if (axlim != None):
lengthUnit = (axlim[0][1] - axlim[0][0]) / (end - start + 1)
heightUnit = (axlim[1][1] - axlim[1][0]) / height
for i, a in enumerate(msa):
for j,c in enumerate(a[start:end+1]):
linewidth = min(2,fontsize/50)
if show_char:
text = ax.text(x=(j + 0.5)*lengthUnit, y=(i+0.5) * heightUnit, s=c, color="black",
va="center_baseline", ha="center", fontsize=fontsize,
transform=ax.transAxes if axlim == None else ax.transData)
text.set_path_effects([PathEffects.withStroke(linewidth=linewidth,
foreground='w')])
ax.add_patch( patches.Rectangle(xy=(j * lengthUnit, i * heightUnit),
width = lengthUnit, height=heightUnit,
facecolor=color_map[c], linewidth=linewidth, edgecolor="white",
transform=ax.transAxes if axlim == None else ax.transData))
if (axlim == None):
ax.set_xlim(-0.5, end - start + 1 - 0.5)
ax.set_ylim(0-0.5, height-0.5)
# Set the x ticks adaptively at point easy to count
ticks = []
tickLabels = []
candidateSteps = [1,5,10,20,50,100,500,1000,5000,10000]
step = 1
for i,s in enumerate(candidateSteps):
if (s * 5 > end - start + 1):
if (i > 0):
step = candidateSteps[i - 1]
break
tickStart = (int)(start / step) * step + step - 1
if (tickStart != start):
ticks.append(0)
tickLabels.append(start+1)
for i in range(tickStart, end + 1, step):
if (i >= length):
break
ticks.append(i - start)
tickLabels.append(i+1)
if (tickLabels[-1] != min(length, end + 1)):
ticks.append(min(length - 1, end) - start)
tickLabels.append(min(length, end+1))
ax.set_xticks(ticks, tickLabels)
# Set the y
ticks = []
tickLabels = []
for i in range(height):
ticks.append(i)
tickLabels.append(i if seq_names == None else seq_names[i])
ax.set_yticks(ticks, tickLabels)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
return ax, color_map
def GetConsensus(msa, start = None, end = None):
start, end = GetStartEnd(msa, start, end)
consensus = []
consensusComposition = []
for j in range(start, end + 1):
composition = {}
if (j >= len(msa[0])):
consensus.append('')
consensusComposition.append({"":0})
continue
for i,a in enumerate(msa):
if (a[j] not in composition):
composition[a[j]] = 0
composition[a[j]] += 1
result = ""
maxCnt = 0
for c in composition:
if (composition[c] > maxCnt):
maxCnt = composition[c]
result = c
consensus.append(result)
consensusComposition.append(composition)
return consensus, consensusComposition
def SetConsensusAxTicks(consensus, consensusComposition, ax):
ticks = []
tickLabels = []
for i in range(len(consensus)):
ticks.append(i)
label = consensus[i]
for c in consensusComposition[i]:
if (c == label):
continue
if (consensusComposition[i][c] == consensusComposition[i][label]):
label = 'X'
break
tickLabels.append(label)
ax.set_xticks(ticks, tickLabels)
def DrawConsensusHisto(msa, color = [0, 0, 1], color_map = None, start = None, end = None, ax=None):
ax = ax or plt.gca()
consensus, consensusComposition = GetConsensus(msa, start, end)
binHeight = []
colors = []
for i in range(len(consensus)):
if (sum(consensusComposition[i].values()) == 0):
binHeight.append(0)
else:
binHeight.append( consensusComposition[i][consensus[i]] /
sum(consensusComposition[i].values()) )
colors.append([1-binHeight[i] * (1-color[0]),
1-binHeight[i] * (1-color[1]),
1-binHeight[i] * (1-color[2])]) # color-base in blue
ax.bar(x=list(range(0, len(consensus))), height=binHeight,
color = colors,
width=0.95)
ax.set(ylim=(0, 1))
ax.set(xlim=(-0.5, len(consensus)-0.5))
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.get_yaxis().set_ticks([])
SetConsensusAxTicks(consensus, consensusComposition, ax)
# Code from pyseqlogo for scale font to one direction
class Scale(RendererBase):
"""Scale alphabets using affine transformation"""
def __init__(self, sx, sy=None):
self._sx = sx
self._sy = sy
def draw_path(self, renderer, gc, tpath, affine, rgbFace):
affine = Affine2D().scale(self._sx, self._sy) + affine
renderer.draw_path(gc, tpath, affine, rgbFace)
def CalculateEntropy(count):
s = sum(count)
if (s == 0):
return 0
return sum([-c/s * math.log2(c/s) for c in count])
def DrawSeqLogo(msa, color_map, alphabet_size = None, start = None, end = None, ax=None):
ax = ax or plt.gca()
fig = ax.get_figure()
start, end = GetStartEnd(msa, start, end)
alphabet_size = len(color_map) - 2 # 2 for "-" and "."
consensus, consensusComposition = GetConsensus(msa, start, end)
# Definition from https://en.wikipedia.org/wiki/Sequence_logo
# Search for appropriate height.
r = []
adjuste = 1 / math.log(2) * (alphabet_size - 1) / (2 * len(msa[0]))
for i,c in enumerate(consensus):
entropy = CalculateEntropy(list(consensusComposition[i].values()))
r.append(math.log2(alphabet_size) - (entropy + adjuste))
ax.set_xlim(-0.5, end-start+1-0.5)
ax.set_ylim(0, max(r))
fontsize = CalculateFontsize(ax.get_xlim(), ax.get_ylim(),
ax, fig, 1, end - start + 1)
lengthUnit = 1
for i,c in enumerate(consensusComposition):
prevy = 0
totalCount = sum(list(c.values()))
if (totalCount == 0):
continue
for j,item in enumerate(sorted(c.items(), key=lambda x:x[1], reverse=True)):
k = item[0]
v = item[1]
text = ax.text(x=i * lengthUnit, y=prevy, s=k, fontsize=fontsize,
va="baseline", ha="center", color = (color_map[k] if (k not in ['.','-']) else [0,0,0]),
transform=ax.transData)
height = v / totalCount * r[i]
tbox = text.get_window_extent(text._renderer).transformed(ax.transData.inverted())
scale = height / (tbox.y1 - prevy)
#print(i, j, height, scale, tbox)
prevy = prevy + height
text.set_path_effects([Scale(1.0, scale)])
ax.axis('off')
SetConsensusAxTicks(consensus, consensusComposition, ax)
# Add the annotation for the sequence alignment
# annotations: a list of numbers like [['a',0,3]]: msa[0..3] (both inclusive) is annotated as the name 'a'
def DrawAnnotation(msa, annotations, color_map=None,start = None, end = None, ax=None):
ax = ax or plt.gca()
fig = ax.get_figure()
start, end = GetStartEnd(msa, start, end)
ax.set_xlim(start - 0.5, end + 0.5)
ax.set_ylim(0, 1)
fontsize = CalculateFontsize(ax.get_xlim(), ax.get_ylim(), ax, fig, 1, end - start + 1)
for a in annotations:
text = ax.text(x=(a[1]+a[2])/2, y=0.5, s=a[0], fontsize=fontsize,
va="center", ha="center", color="black", clip_on=True)
tbox = text.get_window_extent(text._renderer).transformed(ax.transData.inverted())
# Draw the bracket
ax.plot([a[1], a[1]], [0, 1], color="black", clip_on=True)
ax.plot([a[2], a[2]], [0, 1], color="black", clip_on=True)
ax.plot([a[1], tbox.x0], [0.5, 0.5], color="black", clip_on=True)
ax.plot([tbox.x1, a[2]], [0.5, 0.5], color="black", clip_on=True)
ax.axis('off')
# Draw multipanel MSA
def DrawComplexMSA(msa, panels=[], seq_names = None, panel_height_ratios=None, panel_params=None,
color_map=None, start=None, end=None, wrap=None, figsize=None):
color_map = color_map or GetColorMap(msa=msa)
start,end = GetStartEnd(msa, start,end)
wrap = wrap or (end - start + 1)
chunks = math.ceil((end - start + 1) / wrap)
height_ratios = None
if (panel_height_ratios is None):
panel_height_ratios = []
for p in panels:
if (p == DrawMSA):
panel_height_ratios.append(len(msa))
elif (p == DrawAnnotation):
panel_height_ratios.append(0.5)
else:
panel_height_ratios.append(1)
height_ratios = panel_height_ratios * chunks
fig,axes = plt.subplots(len(panels) * chunks, 1, constrained_layout=True,
figsize=figsize, height_ratios = height_ratios)
axidx = 0
for i in range(start, end + 1, wrap):
for j,func in enumerate(panels):
extraParam = {}
if (panel_params is not None):
extraParam = panel_params[j].copy()
if func is DrawMSA:
extraParam['seq_names'] = seq_names
func(msa, color_map = color_map, start=i, end=i+wrap-1,ax=axes[axidx], **extraParam)
axidx += 1
return axes |