File size: 13,369 Bytes
7873945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms
from matplotlib.transforms import Affine2D
import math
from matplotlib.patheffects import RendererBase
import matplotlib.patheffects as PathEffects
import seaborn as sns

# Calculate the font size that match the unit length on x-axis or y-axis
def CalculateFontsize(xlim, ylim, ax, fig, rows, cols, unit_scale=1):
    # Get axis limits
    axXlim = ax.get_xlim()
    axYlim = ax.get_ylim()

    # Get figure dimensions in pixels
    fig_width, fig_height = fig.get_size_inches() * fig.dpi

    # Get axis dimensions in pixels
    bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
    ax_width, ax_height = bbox.width * fig.dpi, bbox.height * fig.dpi

    # Calculate font size proportional to axis units
    fontsize_x = unit_scale * ax_width / (axXlim[1] - axXlim[0]) / cols * (xlim[1] - xlim[0])
    fontsize_y = 0.8 * unit_scale * ax_height / (axYlim[1] - axYlim[0]) / rows * (ylim[1] - ylim[0])

    # Use the minimum of the two to keep the font size consistent
    fontsize = min(fontsize_x, fontsize_y)

    return fontsize


def GetStartEnd(msa, start, end):
    length = len(msa[0])
    if (start == None):
        start = 0
    elif (start < 0):
        start = length + start 
    if (end == None):
        end = length - 1 
    elif (end < 0):
        end = length + end 
    return start, end


def GetColorMap(preset = None, msa=None, color_order = None, palette = None):
    color_map = {}
    if preset in ["dna", "nuc", "nucleotide"]:
        color_map['A'] = [0,1,0]
        color_map['C'] = [1,165/255,0]
        color_map['G'] = [1,0,0]
        color_map['T'] = [0.5,0.5,1]
    else:
        if (color_order != None):
            for i,c in enumerate(color_order):
                color_map[c] = sns.color_palette(palette)[i]
            
        # The case some of the alphabet color is not specified in the order     
        for a in msa:
            for c in a:
                if c not in color_map:
                    size = len(color_map)
                    color_map[c] = sns.color_palette(palette)[size]
    
    color_map['-'] = [1,1,1] # white
    color_map['.'] = [1,1,1] # white
    return color_map


def DrawMSA(msa, seq_names = None, start = None, end = None,

            axlim = None, color_map = None, palette=None, ax=None, fig=None,

            show_char=True):
    # Get the canvas attributes.
    ax = ax or plt.gca()
    
    fig = fig or ax.get_figure()
    renderer = fig.canvas.get_renderer()
    
    height = len(msa)
    length = len(msa[0])
    
    # start, end: draw the [start,end] (both inclusive) region of the MSA
    start, end = GetStartEnd(msa, start, end)
    
    if (axlim == None):
        fontsize = CalculateFontsize(ax.get_xlim(), ax.get_ylim(), ax, fig, height, end - start + 1)
    else:
        fontsize = CalculateFontsize(axlim[0], axlim[1], ax, fig, height, end - start + 1)
   
    color_map = color_map or GetColorMap(msa=msa, color_order=None, palette=palette)
    
    lengthUnit = 1 / (end - start + 1)
    heightUnit = 1 / height 
    if (axlim != None):
        lengthUnit = (axlim[0][1] - axlim[0][0]) / (end - start + 1)
        heightUnit = (axlim[1][1] - axlim[1][0]) / height
    
    for i, a in enumerate(msa):
        for j,c in enumerate(a[start:end+1]):
            linewidth = min(2,fontsize/50)
            if show_char:
                text = ax.text(x=(j + 0.5)*lengthUnit, y=(i+0.5) * heightUnit, s=c, color="black",
                    va="center_baseline", ha="center", fontsize=fontsize, 
                    transform=ax.transAxes if axlim == None else ax.transData)
                text.set_path_effects([PathEffects.withStroke(linewidth=linewidth, 
                                                         foreground='w')])
            ax.add_patch( patches.Rectangle(xy=(j * lengthUnit, i * heightUnit),
                                           width = lengthUnit, height=heightUnit,
                                          facecolor=color_map[c], linewidth=linewidth, edgecolor="white",
                                          transform=ax.transAxes if axlim == None else ax.transData))
    if (axlim == None):
        ax.set_xlim(-0.5, end - start + 1 - 0.5)
        ax.set_ylim(0-0.5, height-0.5)
        
        # Set the x ticks adaptively at point easy to count
        ticks = []
        tickLabels = []
        
        candidateSteps = [1,5,10,20,50,100,500,1000,5000,10000]
        step = 1
        for i,s in enumerate(candidateSteps):
            if (s * 5 > end - start + 1):
                if (i > 0):
                    step = candidateSteps[i - 1]
                break
        
        tickStart = (int)(start / step) * step + step - 1
        if (tickStart != start):
            ticks.append(0)
            tickLabels.append(start+1)
        for i in range(tickStart, end + 1, step):
            if (i >= length):
                break
            ticks.append(i - start)
            tickLabels.append(i+1)
        if (tickLabels[-1] != min(length, end + 1)):
            ticks.append(min(length - 1, end) - start)
            tickLabels.append(min(length, end+1))
        ax.set_xticks(ticks, tickLabels)
        
        # Set the y
        ticks = []
        tickLabels = []
        for i in range(height):
            ticks.append(i)
            tickLabels.append(i if seq_names == None else seq_names[i])
        ax.set_yticks(ticks, tickLabels)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)    
    ax.spines['left'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    return ax, color_map

def GetConsensus(msa, start = None, end = None):
    start, end = GetStartEnd(msa, start, end)
    consensus = []
    consensusComposition = []
    for j in range(start, end + 1):
        composition = {}
        if (j >= len(msa[0])):
            consensus.append('')
            consensusComposition.append({"":0})
            continue
            
        for i,a in enumerate(msa):
            if (a[j] not in composition):
                composition[a[j]] = 0
            composition[a[j]] += 1
        result = ""
        maxCnt = 0
        for c in composition:
            if (composition[c] > maxCnt):
                maxCnt = composition[c]
                result = c
        consensus.append(result)
        consensusComposition.append(composition)
    return consensus, consensusComposition

def SetConsensusAxTicks(consensus, consensusComposition, ax):
    ticks = []
    tickLabels = []
    for i in range(len(consensus)):
        ticks.append(i)
        label = consensus[i]
        for c in consensusComposition[i]:
            if (c == label):
                continue
            if (consensusComposition[i][c] == consensusComposition[i][label]):
                label = 'X'
                break
        tickLabels.append(label)
    ax.set_xticks(ticks, tickLabels)

def DrawConsensusHisto(msa, color = [0, 0, 1], color_map = None, start = None, end = None, ax=None):
    ax = ax or plt.gca()
    consensus, consensusComposition = GetConsensus(msa, start, end)
    binHeight = []
    colors = []
    for i in range(len(consensus)):
        if (sum(consensusComposition[i].values()) == 0):
            binHeight.append(0)
        else:
            binHeight.append( consensusComposition[i][consensus[i]] / 
                         sum(consensusComposition[i].values()) )
        colors.append([1-binHeight[i] * (1-color[0]), 
                       1-binHeight[i] * (1-color[1]), 
                       1-binHeight[i] * (1-color[2])]) # color-base in blue
    ax.bar(x=list(range(0, len(consensus))), height=binHeight, 
           color = colors,
           width=0.95)
    ax.set(ylim=(0, 1))
    ax.set(xlim=(-0.5, len(consensus)-0.5))
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.get_yaxis().set_ticks([])
    SetConsensusAxTicks(consensus, consensusComposition, ax)


# Code from pyseqlogo for scale font to one direction
class Scale(RendererBase):
    """Scale alphabets using affine transformation"""

    def __init__(self, sx, sy=None):
        self._sx = sx
        self._sy = sy

    def draw_path(self, renderer, gc, tpath, affine, rgbFace):
        affine = Affine2D().scale(self._sx, self._sy) + affine
        renderer.draw_path(gc, tpath, affine, rgbFace)

def CalculateEntropy(count):
    s = sum(count)
    if (s == 0):
        return 0
    return sum([-c/s * math.log2(c/s) for c in count])

def DrawSeqLogo(msa, color_map, alphabet_size = None, start = None, end = None, ax=None):
    ax = ax or plt.gca()
    fig = ax.get_figure()
    start, end = GetStartEnd(msa, start, end)
    
    alphabet_size = len(color_map) - 2 # 2 for "-" and "."
    consensus, consensusComposition = GetConsensus(msa, start, end)

    # Definition from https://en.wikipedia.org/wiki/Sequence_logo
    # Search for appropriate height. 
    r = []
    adjuste = 1 / math.log(2) * (alphabet_size - 1) / (2 * len(msa[0]))
    for i,c in enumerate(consensus):
        entropy = CalculateEntropy(list(consensusComposition[i].values()))
        r.append(math.log2(alphabet_size) - (entropy + adjuste))
    
    ax.set_xlim(-0.5, end-start+1-0.5)
    ax.set_ylim(0, max(r))
    
    fontsize = CalculateFontsize(ax.get_xlim(), ax.get_ylim(), 
                                 ax, fig, 1, end - start + 1)
    
    lengthUnit = 1
    for i,c in enumerate(consensusComposition):
        prevy = 0
        totalCount = sum(list(c.values()))
        if (totalCount == 0):
            continue
        for j,item in enumerate(sorted(c.items(), key=lambda x:x[1], reverse=True)):
            k = item[0]
            v = item[1]
            text = ax.text(x=i * lengthUnit, y=prevy, s=k, fontsize=fontsize,
               va="baseline", ha="center", color = (color_map[k] if (k not in ['.','-']) else [0,0,0]),
               transform=ax.transData)
            
            height = v / totalCount * r[i]
            tbox = text.get_window_extent(text._renderer).transformed(ax.transData.inverted())
            scale = height / (tbox.y1 - prevy) 
            #print(i, j, height, scale, tbox)
            prevy = prevy + height 
            text.set_path_effects([Scale(1.0, scale)])
    ax.axis('off')
    SetConsensusAxTicks(consensus, consensusComposition, ax)

# Add the annotation for the sequence alignment
#  annotations: a list of numbers like [['a',0,3]]: msa[0..3] (both inclusive) is annotated as the name 'a'
def DrawAnnotation(msa, annotations, color_map=None,start = None, end = None, ax=None):
    ax = ax or plt.gca()
    fig = ax.get_figure()
    start, end = GetStartEnd(msa, start, end)
     
    ax.set_xlim(start - 0.5, end + 0.5)
    ax.set_ylim(0, 1)
    fontsize = CalculateFontsize(ax.get_xlim(), ax.get_ylim(), ax, fig, 1, end - start + 1)
    
    for a in annotations:
        text = ax.text(x=(a[1]+a[2])/2, y=0.5, s=a[0], fontsize=fontsize,
                       va="center", ha="center", color="black", clip_on=True)
        tbox = text.get_window_extent(text._renderer).transformed(ax.transData.inverted())
        # Draw the bracket
        ax.plot([a[1], a[1]], [0, 1], color="black", clip_on=True)
        ax.plot([a[2], a[2]], [0, 1], color="black", clip_on=True)
        ax.plot([a[1], tbox.x0], [0.5, 0.5], color="black", clip_on=True)
        ax.plot([tbox.x1, a[2]], [0.5, 0.5], color="black", clip_on=True)

    ax.axis('off')

# Draw multipanel MSA
def DrawComplexMSA(msa, panels=[], seq_names = None, panel_height_ratios=None, panel_params=None, 

                   color_map=None, start=None, end=None, wrap=None, figsize=None):
    color_map = color_map or GetColorMap(msa=msa)
    start,end = GetStartEnd(msa, start,end)
    wrap = wrap or (end - start + 1)
    chunks = math.ceil((end - start + 1) / wrap)
    
    height_ratios = None
    if (panel_height_ratios is None):
        panel_height_ratios = []
        for p in panels:
            if (p == DrawMSA):
                panel_height_ratios.append(len(msa))
            elif (p == DrawAnnotation):
                panel_height_ratios.append(0.5)
            else:
                panel_height_ratios.append(1)
    height_ratios = panel_height_ratios * chunks
    fig,axes = plt.subplots(len(panels) * chunks, 1, constrained_layout=True,
                            figsize=figsize, height_ratios = height_ratios)
    
    axidx = 0
    for i in range(start, end + 1, wrap):
        for j,func in enumerate(panels):
            extraParam = {}
            if (panel_params is not None):
                extraParam = panel_params[j].copy()
            if func is DrawMSA:
                extraParam['seq_names'] = seq_names
            func(msa, color_map = color_map, start=i, end=i+wrap-1,ax=axes[axidx], **extraParam)
            axidx += 1
    return axes