File size: 6,765 Bytes
7873945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from __future__ import annotations

import json
from typing import Any, List, Dict, Optional, Literal, ClassVar
from gradio.components import Component
from gradio.data_classes import FileData, GradioModel
from gradio.events import Events, EventListener

import matplotlib.pyplot as plt
import io
import base64

# Import functions from msa.py
from .msa import (
    DrawMSA,
    DrawConsensusHisto,
    DrawSeqLogo,
    DrawAnnotation,
    DrawComplexMSA,
    GetColorMap,
)

class MSAPlotData(GradioModel):
    msa: List[str]
    seq_names: Optional[List[str]] = None
    start: Optional[int] = None
    end: Optional[int] = None
    color_map: Optional[Dict[str, List[float]]] = None
    plot_type: Literal["msa", "consensus", "logo", "annotation", "complex"] = "msa"
    panels: List[str] = ["msa"]
    panel_height_ratios: Optional[List[float]] = None
    panel_params: Optional[List[Dict[str, Any]]] = None
    wrap: Optional[int] = None
    figsize: Optional[List[float]] = None
    annotations: Optional[List[List[Any]]] = None

    EVENTS: ClassVar[List[Events | EventListener]] = [] 

    def __init__(self, data: Any = None, **kwargs):
        super().__init__(**kwargs)
        if data is not None:
            self.__dict__.update(data)
            
    @classmethod
    def get_events(cls) -> Dict[str, Any]:
        return {}  # MSAPlotData has no events

    @classmethod
    def get_description(cls) -> str:
        return "Helper class for MSAPlot data"
    
class MSAPlot(Component):
    """

    Creates a Multiple Sequence Alignment (MSA) plot component.

    """

    # EVENTS = {
    #     "change": None,
    #     "clear": None
    # }
    EVENTS = [
        Events.change,
        EventListener("clear", doc="Triggered when the plot is cleared.")
    ]

    data_model = MSAPlotData
    def __init__(

        self,

        value: Any | None = None,

        *,

        label: str | None = None,

        every: float | None = None,

        show_label: bool | None = None,

        container: bool = True,

        scale: int | None = None,

        min_width: int = 160,

        visible: bool = True,

        elem_id: str | None = None,

        elem_classes: list[str] | str | None = None,

        render: bool = True,

        key: int | str | None = None,

    ):
        super().__init__(
            label=label,
            every=every,
            show_label=show_label,
            container=container,
            scale=scale,
            min_width=min_width,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            render=render,
            key=key,
            value=value,
        )

    def preprocess(self, payload: MSAPlotData | None) -> MSAPlotData | None:
        return payload

    def postprocess(self, value: MSAPlotData) -> Dict[str, Any]:
        if value is None:
            return None

        fig, ax = plt.subplots(figsize=value.figsize or (10, 5))

        color_map = value.color_map or GetColorMap(msa=value.msa)

        if value.plot_type == "msa":
            DrawMSA(value.msa, seq_names=value.seq_names, start=value.start, end=value.end, color_map=color_map, ax=ax)
        elif value.plot_type == "consensus":
            DrawConsensusHisto(value.msa, color_map=color_map, start=value.start, end=value.end, ax=ax)
        elif value.plot_type == "logo":
            DrawSeqLogo(value.msa, color_map=color_map, start=value.start, end=value.end, ax=ax)
        elif value.plot_type == "annotation":
            if value.annotations:
                DrawAnnotation(value.msa, value.annotations, color_map=color_map, start=value.start, end=value.end, ax=ax)
            else:
                raise ValueError("Annotations are required for annotation plot type")
        elif value.plot_type == "complex":
            panel_functions = {
                "msa": DrawMSA,
                "consensus": DrawConsensusHisto,
                "logo": DrawSeqLogo,
                "annotation": DrawAnnotation,
            }
            panels = [panel_functions[p] for p in value.panels]
            DrawComplexMSA(
                value.msa,
                panels=panels,
                seq_names=value.seq_names,
                panel_height_ratios=value.panel_height_ratios,
                panel_params=value.panel_params,
                color_map=color_map,
                start=value.start,
                end=value.end,
                wrap=value.wrap,
                figsize=value.figsize,
            )

        buf = io.BytesIO()
        plt.savefig(buf, format='png')
        buf.seek(0)
        img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
        plt.close(fig)

        return {
            "type": "matplotlib",
            "plot": f"data:image/png;base64,{img_base64}",
        }

    def example_payload(self) -> Any:
        return MSAPlotData(
            msa=[
                "ATGCATGC",
                "ATG-ATGC",
                "ATGCATGC",
            ],
            seq_names=["Seq1", "Seq2", "Seq3"],
            plot_type="complex",
            panels=["msa", "consensus", "logo"],
        )

    def example_value(self) -> Any:
        return self.example_payload()

    @classmethod
    def get_events(cls) -> Dict[str, Any]:
        return {event.value if isinstance(event, Events) else event.name: event.doc for event in cls.EVENTS}

    @classmethod
    def get_description(cls) -> str:
        return "Creates a Multiple Sequence Alignment (MSA) plot component."
      
    def api_info(self) -> Dict[str, Any]:
        return {
            "type": "object",
            "properties": {
                "msa": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "List of sequences in the multiple sequence alignment",
                },
                "seq_names": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "List of sequence names",
                },
                "plot_type": {
                    "type": "string",
                    "enum": ["msa", "consensus", "logo", "annotation", "complex"],
                    "description": "Type of plot to generate",
                },
                "panels": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "List of panels to include in a complex plot",
                },
            },
            "required": ["msa"],
        }