File size: 1,870 Bytes
3e533d7
 
8caee60
3e533d7
 
 
8caee60
 
 
3e533d7
 
 
 
 
bdec318
3e533d7
 
 
 
 
 
 
 
 
 
 
 
 
 
bdec318
 
 
3e533d7
 
bdec318
3e533d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from pyannote.audio import Pipeline
from pydub import AudioSegment
import os
import torch
import json

hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
pipeline = Pipeline.from_pretrained(
    'pyannote/speaker-diarization', use_auth_token=hugging_face_token)
device = torch.device("cpu")
pipeline.to(device)


def startDiarization(input_file):
    print("Starting diarization")
    diarization = pipeline(input_file)

    sample_groups = []
    speaker_groups = {}
    for turn, _, speaker in diarization.itertracks(yield_label=True):
        if (speaker not in sample_groups):
            sample_groups.append(str(speaker))

        suffix = 1
        file_name = f"{speaker}-{suffix}"
        while file_name in speaker_groups:
            suffix += 1
            file_name = f"{speaker}-{suffix}"
        speaker_groups[file_name] = [turn.start, turn.end]
        print(f"speaker_groups {file_name}: {speaker_groups[file_name]}")
        print(f"start={turn.start:.3f}s stop={turn.end:.3f}s speaker_{speaker}")

    saveGroupsJson(sample_groups, speaker_groups)
    audioSegmentation(input_file, speaker_groups)
    print(str(speaker_groups))
    return str(speaker_groups)


def audioSegmentation(input_file, speaker_groups_dict):
    audioSegment = AudioSegment.from_wav(input_file)
    for speaker in speaker_groups_dict:
        time = speaker_groups_dict[speaker]
        audioSegment[time[0]*1000: time[1] *
                     1000].export(f"{speaker}.wav", format='wav')
        print(f"group {speaker}: {time[0]*1000}--{time[1]*1000}")


def saveGroupsJson(sample_groups_list: list, speaker_groups_dict: dict):
    with open("sample_groups.json", "w") as json_file_sample:
        json.dump(sample_groups_list, json_file_sample)
    with open("speaker_groups.json", "w") as json_file_speaker:
        json.dump(speaker_groups_dict, json_file_speaker)