#!/usr/bin/env python# from llama_cpp import Llama from time import time import gradio as gr import psutil # load like this - use tne variable everywhere model_path=os.getenv("MODEL_PATH") # show warning, when empty and briefs description of how to set it # Initing things print(f"debug: init model: {model_path}") #llm = Llama(model_path="./model.bin") # LLaMa model print("! INITING DONE !") # Preparing things to work title = "# Demo for 7B Models - Quantized" descr = ''' Quantized to run in the free tier hosting. Have a quick way to test models or share them with others without hassle. It runs slow, as it's on cpu. Usable for basic tests. It uses quantized models in gguf-Format and llama.cpp to run them. Powered by ...''' print(f"DEBUG: Memory free: {psutil.virtual_memory().free / (1024.0 ** 3)} GiB") print(f"DEBUG: Memory: {psutil.virtual_memory().total / (1024.0 ** 3)} GiB") import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = "# Mistral-7B" if torch.cuda.is_available(): DESCRIPTION += "\n
This space is using CPU only. Use a different one if you want to go fast and use GPU.
" MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) #download model here # check localstorage, if no there, load, else use existing. # check gradio - how does it dl? is there a function we can use? if torch.cuda.is_available(): model_id = "mistralai/Mistral-7B-Instruct-v0.1" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) # we need to make sure we only run one thread or we probably run out of ram def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, # add more eval examples, like a long list taken from teknium and others maybe group by type examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(title) gr.Markdown(descr) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", # add ) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()