Spaces:
Paused
Paused
File size: 8,799 Bytes
7936e19 4da1162 d1ba27e 7936e19 d1ba27e 4da1162 d1ba27e 7936e19 e01790e 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 6f2560d 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 d1ba27e 4da1162 d1ba27e 4da1162 d1ba27e 4da1162 d1ba27e 4da1162 d1ba27e 4da1162 d1ba27e 4da1162 c0fefaf d1ba27e 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 bb7f855 7936e19 5ece7aa d1ba27e 7936e19 d1ba27e c640f15 d1ba27e c640f15 7936e19 c0fefaf d1ba27e 4da1162 d1ba27e 7936e19 d1ba27e 7936e19 d1ba27e 7936e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import torch
import numpy as np
import pandas as pd
from sentence_transformers import util, SentenceTransformer
import redis
import json
from typing import Dict, List
import google.generativeai as genai
from flask import Flask, request, jsonify, Response
import requests
from io import StringIO
from openai import OpenAI
# Initialize Flask app
app = Flask(__name__)
# Redis configuration
r = redis.Redis(
host='redis-12878.c1.ap-southeast-1-1.ec2.redns.redis-cloud.com',
port=12878,
db=0,
password="qKl6znBvULaveJhkjIjMr7RCwluJjjbH",
decode_responses=True
)
# Device configuration - Use CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
client = OpenAI()
# Load CSV from Google Drive
def load_csv_from_drive():
file_id = "1x3tPRumTK3i7zpymeiPIjVztmt_GGr5V"
url = f"https://drive.google.com/uc?id={file_id}"
response = requests.get(url)
csv_content = StringIO(response.text)
df = pd.read_csv(csv_content)[['text', 'embeddings']]
# Process embeddings
df["embeddings"] = df["embeddings"].apply(
lambda x: np.fromstring(x.strip("[]"), sep=",", dtype=np.float32)
)
return df
# Load data and initialize models with GPU support
text_chunks_and_embedding_df = load_csv_from_drive()
pages_and_chunks = text_chunks_and_embedding_df.to_dict(orient="records")
embeddings = torch.tensor(
np.vstack(text_chunks_and_embedding_df["embeddings"].values),
dtype=torch.float32
).to(device)
# Initialize embedding model with GPU support
embedding_model = SentenceTransformer(
model_name_or_path="keepitreal/vietnamese-sbert",
device=device
)
def store_conversation(conversation_id: str, q: str, a: str) -> None:
conversation_element = {
'q': q,
'a': a,
}
conversation_json = json.dumps(conversation_element)
r.lpush(f'conversation_{conversation_id}', conversation_json)
current_length = r.llen(f'conversation_{conversation_id}')
if current_length > 2:
r.rpop(f'conversation_{conversation_id}')
def retrieve_conversation(conversation_id):
conversation = r.lrange(f'conversation_{conversation_id}', 0, -1)
return [json.loads(c) for c in conversation]
def combine_vectors_method2(vector_weight_pairs):
weight_norm = np.sqrt(sum(weight**2 for _, weight in vector_weight_pairs))
combined_vector = np.zeros_like(vector_weight_pairs[0][0])
for vector, weight in vector_weight_pairs:
normalized_weight = weight / weight_norm
combined_vector += vector * normalized_weight
return combined_vector
def get_weighted_query(current_question: str, parsed_conversation: List[Dict]) -> np.ndarray:
# Move computation to GPU
with torch.cuda.device(device):
current_vector = embedding_model.encode(current_question, convert_to_tensor=True)
weighted_parts = [(current_vector.cpu().numpy(), 1.0)]
if parsed_conversation:
context_string = " ".join(
f"{chat['q']} {chat['a']}" for chat in parsed_conversation
)
context_vector = embedding_model.encode(context_string, convert_to_tensor=True)
similarity = util.pytorch_cos_sim(current_vector, context_vector)[0][0].item()
weight = 1.0 if similarity > 0.4 else 0.5
weighted_parts.append((context_vector.cpu().numpy(), weight))
weighted_query_vector = combine_vectors_method2(weighted_parts)
weighted_query_vector = torch.from_numpy(weighted_query_vector).to(device, dtype=torch.float32)
# Normalize vector
norm = torch.norm(weighted_query_vector)
weighted_query_vector = weighted_query_vector / norm if norm > 0 else weighted_query_vector
return weighted_query_vector.cpu().numpy()
def retrieve_relevant_resources(query_vector, embeddings, similarity_threshold=0.5, n_resources_to_return=10):
query_embedding = torch.from_numpy(query_vector).to(device, dtype=torch.float32)
if len(query_embedding.shape) == 1:
query_embedding = query_embedding.unsqueeze(0)
if embeddings.shape[1] != query_embedding.shape[1]:
query_embedding = torch.nn.functional.pad(
query_embedding,
(0, embeddings.shape[1] - query_embedding.shape[1])
)
# Normalize tensors on GPU
query_embedding = torch.nn.functional.normalize(query_embedding, p=2, dim=1)
embeddings_normalized = torch.nn.functional.normalize(embeddings, p=2, dim=1)
# Perform matmul on GPU
cosine_scores = torch.matmul(query_embedding, embeddings_normalized.t())[0]
mask = cosine_scores >= similarity_threshold
filtered_scores = cosine_scores[mask]
filtered_indices = mask.nonzero().squeeze()
if len(filtered_scores) == 0:
return torch.tensor([], device=device), torch.tensor([], device=device)
k = min(n_resources_to_return, len(filtered_scores))
scores, indices = torch.topk(filtered_scores, k=k)
final_indices = filtered_indices[indices]
return scores, final_indices
def hyde(query, conversation_id, cid):
prompt = """
[Your existing prompt text here]
"""
messages = [
{
"role": "system",
"content": prompt,
}
]
history = retrieve_conversation(conversation_id)
for c in history:
messages.append({
"role": "user",
"content": c["q"]
})
messages.append({
"role": "assistant",
"content": c["a"]
})
if cid:
messages.append({
"role": "user",
"content": [
{"type": "text", "text": query},
{
"type": "image_url",
"image_url": {
"url": "https://magenta-known-swan-641.mypinata.cloud/ipfs/" + cid,
}
},
],
})
else:
messages.append({
"role": "user",
"content": query
})
completion = client.chat.completions.create(
model="gpt-4o",
messages=messages
)
return completion.choices[0].message.content
def prompt_formatter(mode, query: str, context_items: List[Dict], history: List[Dict] = None, isFirst = False) -> str:
# [Your existing prompt_formatter implementation]
pass
def ask_with_history_v3(query: str, conversation_id: str, isFirst, cid, mode):
parsed_conversation = retrieve_conversation(conversation_id)
weighted_query_vector = get_weighted_query(query, parsed_conversation)
threshold = 0.4
scores, indices = retrieve_relevant_resources(
query_vector=weighted_query_vector,
similarity_threshold=threshold,
embeddings=embeddings
)
# Move results to CPU for processing
filtered_pairs = [(score.cpu().item(), idx.cpu().item()) for score, idx in zip(scores, indices) if score.cpu().item() >= threshold]
if filtered_pairs:
filtered_scores, filtered_indices = zip(*filtered_pairs)
context_items = [pages_and_chunks[i] for i in filtered_indices]
for i, item in enumerate(context_items):
item["score"] = filtered_scores[i]
else:
context_items = []
prompt = prompt_formatter(mode, query=query, context_items=context_items, history=parsed_conversation, isFirst=isFirst)
genai.configure(api_key="AIzaSyDluIEKEhT1Dw2zx7SHEdmKipwBcYOmFQw")
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(prompt, stream=True)
for chunk in response:
yield chunk.text
if mode == "2" or ("Mình sẽ hỗ trợ bạn câu khác nhé?" in response.text):
return
store_conversation(conversation_id, query, response.text)
# API endpoints
@app.route('/', methods=['GET'])
def home():
return "Hello World"
@app.route('/ping', methods=['GET'])
def ping():
return jsonify("Service is running")
@app.route('/generate', methods=['POST'])
def generate_response():
query = request.json['query']
conversation_id = request.json['conversation_id']
isFirst = request.json['is_first'] == "true"
cid = request.json['cid']
mode = request.json['mode']
hyde_query = hyde(query, conversation_id, cid)
if hyde_query[-1] == '.':
return Response(hyde_query, mimetype='text/plain')
def generate():
for token in ask_with_history_v3(hyde_query, conversation_id, isFirst, cid, mode):
yield token
return Response(generate(), mimetype='text/plain')
if __name__ == '__main__':
# Initialize data and models
app.run(host="0.0.0.0", port=7860) |