File size: 8,799 Bytes
7936e19
 
 
 
 
 
 
 
 
 
 
 
4da1162
d1ba27e
7936e19
 
 
 
 
 
 
 
 
 
 
 
d1ba27e
 
 
 
4da1162
d1ba27e
7936e19
 
e01790e
7936e19
 
 
 
 
 
 
 
 
 
 
d1ba27e
7936e19
 
 
 
 
 
 
d1ba27e
7936e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ba27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7936e19
 
d1ba27e
7936e19
 
6f2560d
7936e19
 
 
 
 
 
d1ba27e
7936e19
 
 
d1ba27e
7936e19
 
 
 
 
 
 
d1ba27e
7936e19
 
 
 
 
 
 
d1ba27e
 
 
 
4da1162
 
d1ba27e
 
 
4da1162
 
 
 
d1ba27e
 
 
4da1162
d1ba27e
 
 
 
4da1162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ba27e
 
4da1162
d1ba27e
4da1162
 
 
 
 
c0fefaf
d1ba27e
 
 
7936e19
d1ba27e
7936e19
 
 
 
 
 
 
 
 
 
d1ba27e
 
7936e19
 
 
 
 
 
 
 
 
d1ba27e
7936e19
 
bb7f855
7936e19
 
 
 
 
5ece7aa
 
d1ba27e
7936e19
 
 
d1ba27e
c640f15
d1ba27e
c640f15
7936e19
 
 
 
 
 
 
 
c0fefaf
 
 
d1ba27e
 
 
4da1162
d1ba27e
7936e19
d1ba27e
7936e19
d1ba27e
7936e19
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import torch
import numpy as np
import pandas as pd
from sentence_transformers import util, SentenceTransformer
import redis
import json
from typing import Dict, List
import google.generativeai as genai
from flask import Flask, request, jsonify, Response
import requests
from io import StringIO
from openai import OpenAI

# Initialize Flask app
app = Flask(__name__)

# Redis configuration
r = redis.Redis(
    host='redis-12878.c1.ap-southeast-1-1.ec2.redns.redis-cloud.com',
    port=12878,
    db=0,
    password="qKl6znBvULaveJhkjIjMr7RCwluJjjbH",
    decode_responses=True
)

# Device configuration - Use CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

client = OpenAI()

# Load CSV from Google Drive
def load_csv_from_drive():
    file_id = "1x3tPRumTK3i7zpymeiPIjVztmt_GGr5V"
    url = f"https://drive.google.com/uc?id={file_id}"
    response = requests.get(url)
    csv_content = StringIO(response.text)
    df = pd.read_csv(csv_content)[['text', 'embeddings']]
    
    # Process embeddings
    df["embeddings"] = df["embeddings"].apply(
        lambda x: np.fromstring(x.strip("[]"), sep=",", dtype=np.float32)
    )
    return df

# Load data and initialize models with GPU support
text_chunks_and_embedding_df = load_csv_from_drive()
pages_and_chunks = text_chunks_and_embedding_df.to_dict(orient="records")
embeddings = torch.tensor(
    np.vstack(text_chunks_and_embedding_df["embeddings"].values),
    dtype=torch.float32
).to(device)

# Initialize embedding model with GPU support
embedding_model = SentenceTransformer(
    model_name_or_path="keepitreal/vietnamese-sbert",
    device=device
)

def store_conversation(conversation_id: str, q: str, a: str) -> None:
    conversation_element = {
        'q': q,
        'a': a,
    }
    conversation_json = json.dumps(conversation_element)
    r.lpush(f'conversation_{conversation_id}', conversation_json)
    current_length = r.llen(f'conversation_{conversation_id}')
    if current_length > 2:
        r.rpop(f'conversation_{conversation_id}')

def retrieve_conversation(conversation_id):
    conversation = r.lrange(f'conversation_{conversation_id}', 0, -1)
    return [json.loads(c) for c in conversation]

def combine_vectors_method2(vector_weight_pairs):
    weight_norm = np.sqrt(sum(weight**2 for _, weight in vector_weight_pairs))
    combined_vector = np.zeros_like(vector_weight_pairs[0][0])
    
    for vector, weight in vector_weight_pairs:
        normalized_weight = weight / weight_norm
        combined_vector += vector * normalized_weight
    
    return combined_vector

def get_weighted_query(current_question: str, parsed_conversation: List[Dict]) -> np.ndarray:
    # Move computation to GPU
    with torch.cuda.device(device):
        current_vector = embedding_model.encode(current_question, convert_to_tensor=True)
        weighted_parts = [(current_vector.cpu().numpy(), 1.0)]
        
        if parsed_conversation:
            context_string = " ".join(
                f"{chat['q']} {chat['a']}" for chat in parsed_conversation
            )
            context_vector = embedding_model.encode(context_string, convert_to_tensor=True)
            similarity = util.pytorch_cos_sim(current_vector, context_vector)[0][0].item()
            weight = 1.0 if similarity > 0.4 else 0.5
            weighted_parts.append((context_vector.cpu().numpy(), weight))
        
        weighted_query_vector = combine_vectors_method2(weighted_parts)
        weighted_query_vector = torch.from_numpy(weighted_query_vector).to(device, dtype=torch.float32)
        
        # Normalize vector
        norm = torch.norm(weighted_query_vector)
        weighted_query_vector = weighted_query_vector / norm if norm > 0 else weighted_query_vector
        
        return weighted_query_vector.cpu().numpy()

def retrieve_relevant_resources(query_vector, embeddings, similarity_threshold=0.5, n_resources_to_return=10):
    query_embedding = torch.from_numpy(query_vector).to(device, dtype=torch.float32)
    if len(query_embedding.shape) == 1:
        query_embedding = query_embedding.unsqueeze(0)
    
    if embeddings.shape[1] != query_embedding.shape[1]:
        query_embedding = torch.nn.functional.pad(
            query_embedding,
            (0, embeddings.shape[1] - query_embedding.shape[1])
        )

    # Normalize tensors on GPU
    query_embedding = torch.nn.functional.normalize(query_embedding, p=2, dim=1)
    embeddings_normalized = torch.nn.functional.normalize(embeddings, p=2, dim=1)
    
    # Perform matmul on GPU
    cosine_scores = torch.matmul(query_embedding, embeddings_normalized.t())[0]
    
    mask = cosine_scores >= similarity_threshold
    filtered_scores = cosine_scores[mask]
    filtered_indices = mask.nonzero().squeeze()
    
    if len(filtered_scores) == 0:
        return torch.tensor([], device=device), torch.tensor([], device=device)
    
    k = min(n_resources_to_return, len(filtered_scores))
    scores, indices = torch.topk(filtered_scores, k=k)
    final_indices = filtered_indices[indices]
    
    return scores, final_indices

def hyde(query, conversation_id, cid):
    prompt = """
    [Your existing prompt text here]
    """
    messages = [
        {
            "role": "system",
            "content": prompt,
        }
    ]
    history = retrieve_conversation(conversation_id)
    for c in history:
        messages.append({
            "role": "user", 
            "content": c["q"]
        })
        messages.append({
            "role": "assistant",
            "content": c["a"]
        })
    
    if cid:
        messages.append({
            "role": "user",
            "content": [
                {"type": "text", "text": query},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://magenta-known-swan-641.mypinata.cloud/ipfs/" + cid,
                    }
                },
            ],
        })
    else:
        messages.append({
            "role": "user",
            "content": query
        })
    
    completion = client.chat.completions.create(
        model="gpt-4o",
        messages=messages
    )
    return completion.choices[0].message.content

def prompt_formatter(mode, query: str, context_items: List[Dict], history: List[Dict] = None, isFirst = False) -> str:
    # [Your existing prompt_formatter implementation]
    pass

def ask_with_history_v3(query: str, conversation_id: str, isFirst, cid, mode):
    parsed_conversation = retrieve_conversation(conversation_id)
    weighted_query_vector = get_weighted_query(query, parsed_conversation)
    
    threshold = 0.4
    scores, indices = retrieve_relevant_resources(
        query_vector=weighted_query_vector,
        similarity_threshold=threshold,
        embeddings=embeddings
    )
    
    # Move results to CPU for processing
    filtered_pairs = [(score.cpu().item(), idx.cpu().item()) for score, idx in zip(scores, indices) if score.cpu().item() >= threshold]
    
    if filtered_pairs:
        filtered_scores, filtered_indices = zip(*filtered_pairs)
        context_items = [pages_and_chunks[i] for i in filtered_indices]
        for i, item in enumerate(context_items):
            item["score"] = filtered_scores[i]
    else:
        context_items = []
    
    prompt = prompt_formatter(mode, query=query, context_items=context_items, history=parsed_conversation, isFirst=isFirst)
    
    genai.configure(api_key="AIzaSyDluIEKEhT1Dw2zx7SHEdmKipwBcYOmFQw")
    model = genai.GenerativeModel("gemini-1.5-flash")
    response = model.generate_content(prompt, stream=True)
    
    for chunk in response:
        yield chunk.text
    
    if mode == "2" or ("Mình sẽ hỗ trợ bạn câu khác nhé?" in response.text):
        return
    
    store_conversation(conversation_id, query, response.text)

# API endpoints
@app.route('/', methods=['GET'])
def home():
    return "Hello World"

@app.route('/ping', methods=['GET'])
def ping():
    return jsonify("Service is running")

@app.route('/generate', methods=['POST'])
def generate_response():
    query = request.json['query']
    conversation_id = request.json['conversation_id']
    isFirst = request.json['is_first'] == "true"
    cid = request.json['cid']
    mode = request.json['mode']
    
    hyde_query = hyde(query, conversation_id, cid)
    if hyde_query[-1] == '.':
        return Response(hyde_query, mimetype='text/plain')
    
    def generate():
        for token in ask_with_history_v3(hyde_query, conversation_id, isFirst, cid, mode):
            yield token
    
    return Response(generate(), mimetype='text/plain')

if __name__ == '__main__':
    # Initialize data and models
    app.run(host="0.0.0.0", port=7860)