Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import nltk
|
3 |
+
import numpy as np
|
4 |
+
import re
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
from nltk.tokenize import sent_tokenize
|
8 |
+
from transformers import (
|
9 |
+
MarianTokenizer,
|
10 |
+
MarianMTModel,
|
11 |
+
)
|
12 |
+
|
13 |
+
#define function for text cleaning
|
14 |
+
def clean_text(text):
|
15 |
+
text = text.encode("ascii", errors="ignore").decode(
|
16 |
+
"ascii"
|
17 |
+
) # remove non-ascii, Chinese characters
|
18 |
+
text = re.sub(r"\n", " ", text)
|
19 |
+
text = re.sub(r"\n\n", " ", text)
|
20 |
+
text = re.sub(r"\t", " ", text)
|
21 |
+
text = re.sub(r"http\S+", "", text)
|
22 |
+
text = re.sub(r"ADVERTISEMENT", " ", text)
|
23 |
+
text = re.sub(
|
24 |
+
r"Download our app or subscribe to our Telegram channel for the latest updates on the coronavirus outbreak: https://cna.asia/telegram",
|
25 |
+
" ",
|
26 |
+
text,
|
27 |
+
)
|
28 |
+
text = re.sub(
|
29 |
+
r"Download our app or subscribe to our Telegram channel for the latest updates on the COVID-19 outbreak: https://cna.asia/telegram",
|
30 |
+
" ",
|
31 |
+
text,
|
32 |
+
)
|
33 |
+
text = text.strip(" ")
|
34 |
+
text = re.sub(
|
35 |
+
" +", " ", text
|
36 |
+
).strip() # get rid of multiple spaces and replace with a single
|
37 |
+
return text
|
38 |
+
|
39 |
+
|
40 |
+
# define function for translation
|
41 |
+
modchoice = "Helsinki-NLP/opus-mt-en-zh"
|
42 |
+
|
43 |
+
|
44 |
+
def translate(text):
|
45 |
+
|
46 |
+
input_text = clean_text(text)
|
47 |
+
|
48 |
+
tokenizer = MarianTokenizer.from_pretrained(modchoice)
|
49 |
+
|
50 |
+
model = MarianMTModel.from_pretrained(modchoice)
|
51 |
+
|
52 |
+
if input_text is None or text == "":
|
53 |
+
return ("Error",)
|
54 |
+
|
55 |
+
translated = model.generate(
|
56 |
+
**tokenizer.prepare_seq2seq_batch(
|
57 |
+
sent_tokenize(input_text),
|
58 |
+
truncation=True,
|
59 |
+
padding="longest",
|
60 |
+
return_tensors="pt"
|
61 |
+
)
|
62 |
+
)
|
63 |
+
|
64 |
+
tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
65 |
+
|
66 |
+
return " ".join(tgt_text)
|
67 |
+
|
68 |
+
|
69 |
+
gradio_ui = gr.Interface(
|
70 |
+
fn=translate,
|
71 |
+
title="English-to-Chinese translation",
|
72 |
+
description="Translate English text into Chinese using MarianMT's opus-mt-en-zh model.",
|
73 |
+
inputs=gr.inputs.Textbox(
|
74 |
+
lines=20, label="Paste English text here"
|
75 |
+
),
|
76 |
+
outputs=gr.outputs.Textbox(label="Chinese translation"),
|
77 |
+
theme="huggingface",
|
78 |
+
)
|
79 |
+
|
80 |
+
gradio_ui.launch(enable_queue=True)
|