Spaces:
Running
Running
File size: 3,932 Bytes
b7130f6 75d68af b7130f6 75d68af b7130f6 75d68af b7130f6 cb54dc7 6c2c08f c30096f 6c2c08f b7130f6 75d68af 857ece0 b7130f6 75d68af f7e8a5c 970f37f f7e8a5c b7130f6 857ece0 a80fd23 b7130f6 48eb5af 6c2c08f e4ba9a7 75d68af 857ece0 a80fd23 b7130f6 b4dffda b7130f6 b4dffda b7130f6 b4dffda b7130f6 eb4340e 75d68af eb4340e 857ece0 f2bbc1c 8389ca8 321885d f2bbc1c 8389ca8 039becb 857ece0 039becb d38acc9 b32d4d0 5c6d690 e4ba9a7 6afd0be d38acc9 039becb b7130f6 eb4340e 9103190 b7130f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import random
import gradio as gr
from datasets import load_dataset
from client import Inference
MAX_SEED = 2 ** 31 - 1
client = Inference()
def load_examples():
ds = load_dataset("k-mktr/improved-flux-prompts", split="train")
return [[item] for item in ds.shuffle()["prompt"][:20]]
def generate(
prompt,
seed=None,
randomize_seed=True,
width=1024,
height=1024
):
if seed is None or randomize_seed:
seed = random.randint(0, MAX_SEED)
return client(
prompt=prompt,
seed=seed,
width=width,
height=height
)
with gr.Blocks(
title="🎨 Text-to-Image",
css="footer {display: none !important}",
theme=gr.themes.Base(
primary_hue="red",
secondary_hue="red",
neutral_hue="neutral"
)
) as app:
gr.Markdown("# Text-to-Image")
with gr.Tab("🎨 Generate"):
result = gr.Image(
label="Image",
show_label=False,
format="jpeg",
interactive=False
)
with gr.Row(equal_height=True):
prompt = gr.Textbox(
label="Prompt",
show_label=False,
placeholder="Enter your prompt..",
max_lines=1
)
btn = gr.Button("Generate", variant="primary")
with gr.Tab("💡 Examples"):
examples = gr.Examples(
load_examples(),
inputs=[prompt],
examples_per_page=2
)
randomize_btn = gr.Button("See more")
with gr.Tab("⚙️ Settings"):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=1344,
step=64,
value=1024
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=1344,
step=64,
value=1024
)
with gr.Tab("🖼️ Gallery"):
gallery = gr.Gallery(
label="Gallery",
show_label=False,
format="jpeg",
interactive=False
)
clear_btn = gr.Button("Clear")
with gr.Accordion("ℹ️ About", open=False):
gr.Markdown(f"""
* Created by [🍒 cherry-ghosts community](https://hf.co/cherry-ghosts)
* Powered by [🌻 Pollinations.ai](https://pollinations.ai)
* Running on [Gradio](https://www.gradio.app) v{gr.__version__}
""")
def update_examples():
return gr.update(samples=load_examples())
def add_to_gallery(img, gallery):
if gallery is None:
gallery = []
if img is not None:
gallery = gallery + [img]
return gallery
def clear_gallery():
return []
app.load(
update_examples,
inputs=None,
outputs=[examples.dataset],
queue=False,
show_api=False
)
randomize_btn.click(
update_examples,
inputs=None,
outputs=[examples.dataset],
queue=False,
show_api=False
)
clear_btn.click(
clear_gallery,
inputs=None,
outputs=[gallery],
queue=False,
show_api=False
)
btn.click(
generate,
inputs=[prompt, seed, randomize_seed, width, height],
outputs=[result],
api_name="run"
).then(
add_to_gallery,
inputs=[result, gallery],
outputs=[gallery],
queue=False,
show_api=False
)
if __name__ == "__main__":
app.queue().launch(debug=True, ssr_mode=False) |