import json import os import sys import tempfile from importlib.resources import files import gradio as gr import pandas as pd from dotenv import load_dotenv from graphgen.engine import Context, Engine, collect_ops from graphgen.graphgen import GraphGen from graphgen.models import OpenAIClient, Tokenizer from graphgen.models.llm.limitter import RPM, TPM from graphgen.utils import set_logger from webui.base import WebuiParams from webui.i18n import Translate from webui.i18n import gettext as _ from webui.test_api import test_api_connection from webui.utils import cleanup_workspace, count_tokens, preview_file, setup_workspace root_dir = files("webui").parent sys.path.append(root_dir) load_dotenv() css = """ .center-row { display: flex; justify-content: center; align-items: center; } """ def init_graph_gen(config: dict, env: dict) -> GraphGen: # Set up working directory log_file, working_dir = setup_workspace(os.path.join(root_dir, "cache")) set_logger(log_file, if_stream=True) os.environ.update({k: str(v) for k, v in env.items()}) tokenizer_instance = Tokenizer(config.get("tokenizer", "cl100k_base")) synthesizer_llm_client = OpenAIClient( model_name=env.get("SYNTHESIZER_MODEL", ""), base_url=env.get("SYNTHESIZER_BASE_URL", ""), api_key=env.get("SYNTHESIZER_API_KEY", ""), request_limit=True, rpm=RPM(env.get("RPM", 1000)), tpm=TPM(env.get("TPM", 50000)), tokenizer=tokenizer_instance, ) trainee_llm_client = OpenAIClient( model_name=env.get("TRAINEE_MODEL", ""), base_url=env.get("TRAINEE_BASE_URL", ""), api_key=env.get("TRAINEE_API_KEY", ""), request_limit=True, rpm=RPM(env.get("RPM", 1000)), tpm=TPM(env.get("TPM", 50000)), tokenizer=tokenizer_instance, ) graph_gen = GraphGen( working_dir=working_dir, tokenizer_instance=tokenizer_instance, synthesizer_llm_client=synthesizer_llm_client, trainee_llm_client=trainee_llm_client, ) return graph_gen # pylint: disable=too-many-statements def run_graphgen(params: WebuiParams, progress=gr.Progress()): def sum_tokens(client): return sum(u["total_tokens"] for u in client.token_usage) method = params.partition_method if method == "dfs": partition_params = { "max_units_per_community": params.dfs_max_units, } elif method == "bfs": partition_params = { "max_units_per_community": params.bfs_max_units, } elif method == "leiden": partition_params = { "max_size": params.leiden_max_size, "use_lcc": params.leiden_use_lcc, "random_seed": params.leiden_random_seed, } else: # ece partition_params = { "max_units_per_community": params.ece_max_units, "min_units_per_community": params.ece_min_units, "max_tokens_per_community": params.ece_max_tokens, "unit_sampling": params.ece_unit_sampling, } pipeline = [ { "name": "read", "params": { "input_file": params.upload_file, }, }, { "name": "chunk", "params": { "chunk_size": params.chunk_size, "chunk_overlap": params.chunk_overlap, }, }, { "name": "build_kg", }, ] if params.if_trainee_model: pipeline.append( { "name": "quiz_and_judge", "params": {"quiz_samples": params.quiz_samples, "re_judge": True}, } ) pipeline.append( { "name": "partition", "deps": ["quiz_and_judge"], "params": { "method": params.partition_method, "method_params": partition_params, }, } ) else: pipeline.append( { "name": "partition", "params": { "method": params.partition_method, "method_params": partition_params, }, } ) pipeline.append( { "name": "generate", "params": { "method": params.mode, "data_format": params.data_format, }, } ) config = { "if_trainee_model": params.if_trainee_model, "read": {"input_file": params.upload_file}, "pipeline": pipeline, } env = { "TOKENIZER_MODEL": params.tokenizer, "SYNTHESIZER_BASE_URL": params.synthesizer_url, "SYNTHESIZER_MODEL": params.synthesizer_model, "TRAINEE_BASE_URL": params.trainee_url, "TRAINEE_MODEL": params.trainee_model, "SYNTHESIZER_API_KEY": params.api_key, "TRAINEE_API_KEY": params.trainee_api_key, "RPM": params.rpm, "TPM": params.tpm, } # Test API connection test_api_connection( env["SYNTHESIZER_BASE_URL"], env["SYNTHESIZER_API_KEY"], env["SYNTHESIZER_MODEL"], ) if config["if_trainee_model"]: test_api_connection( env["TRAINEE_BASE_URL"], env["TRAINEE_API_KEY"], env["TRAINEE_MODEL"] ) # Initialize GraphGen graph_gen = init_graph_gen(config, env) graph_gen.clear() graph_gen.progress_bar = progress try: ctx = Context(config=config, graph_gen=graph_gen) ops = collect_ops(config, graph_gen) Engine(max_workers=config.get("max_workers", 4)).run(ops, ctx) # Save output output_data = graph_gen.qa_storage.data with tempfile.NamedTemporaryFile( mode="w", suffix=".jsonl", delete=False, encoding="utf-8" ) as tmpfile: json.dump(output_data, tmpfile, ensure_ascii=False) output_file = tmpfile.name synthesizer_tokens = sum_tokens(graph_gen.synthesizer_llm_client) trainee_tokens = ( sum_tokens(graph_gen.trainee_llm_client) if config["if_trainee_model"] else 0 ) total_tokens = synthesizer_tokens + trainee_tokens data_frame = params.token_counter try: _update_data = [ [data_frame.iloc[0, 0], data_frame.iloc[0, 1], str(total_tokens)] ] new_df = pd.DataFrame(_update_data, columns=data_frame.columns) data_frame = new_df except Exception as e: raise gr.Error(f"DataFrame operation error: {str(e)}") return output_file, gr.DataFrame( label="Token Stats", headers=["Source Text Token Count", "Expected Token Usage", "Token Used"], datatype="str", interactive=False, value=data_frame, visible=True, wrap=True, ) except Exception as e: # pylint: disable=broad-except raise gr.Error(f"Error occurred: {str(e)}") finally: # Clean up workspace cleanup_workspace(graph_gen.working_dir) with gr.Blocks(title="GraphGen Demo", theme=gr.themes.Glass(), css=css) as demo: # Header gr.Image( value=os.path.join(root_dir, "resources", "images", "logo.png"), label="GraphGen Banner", elem_id="banner", interactive=False, container=False, show_download_button=False, show_fullscreen_button=False, ) lang_btn = gr.Radio( choices=[ ("English", "en"), ("简体中文", "zh"), ], value="en", # label=_("Language"), render=False, container=False, elem_classes=["center-row"], ) gr.HTML( """
Version Documentation GitHub Stars arXiv
""" ) with Translate( os.path.join(root_dir, "webui", "translation.json"), lang_btn, placeholder_langs=["en", "zh"], persistant=False, # True to save the language setting in the browser. Requires gradio >= 5.6.0 ): lang_btn.render() gr.Markdown(value=_("Title") + _("Intro")) if_trainee_model = gr.Checkbox( label=_("Use Trainee Model"), value=False, interactive=True ) with gr.Accordion(label=_("Model Config"), open=False): tokenizer = gr.Textbox( label="Tokenizer", value="cl100k_base", interactive=True ) synthesizer_url = gr.Textbox( label="Synthesizer URL", value="https://api.siliconflow.cn/v1", info=_("Synthesizer URL Info"), interactive=True, ) synthesizer_model = gr.Textbox( label="Synthesizer Model", value="Qwen/Qwen2.5-7B-Instruct", info=_("Synthesizer Model Info"), interactive=True, ) trainee_url = gr.Textbox( label="Trainee URL", value="https://api.siliconflow.cn/v1", info=_("Trainee URL Info"), interactive=True, visible=if_trainee_model.value is True, ) trainee_model = gr.Textbox( label="Trainee Model", value="Qwen/Qwen2.5-7B-Instruct", info=_("Trainee Model Info"), interactive=True, visible=if_trainee_model.value is True, ) trainee_api_key = gr.Textbox( label=_("SiliconFlow Token for Trainee Model"), type="password", value="", info="https://cloud.siliconflow.cn/account/ak", visible=if_trainee_model.value is True, ) with gr.Row(equal_height=True): with gr.Column(scale=3): api_key = gr.Textbox( label=_("SiliconFlow Token"), type="password", value="", info=_("SiliconFlow Token Info"), ) with gr.Column(scale=1): test_connection_btn = gr.Button(_("Test Connection")) with gr.Row(equal_height=True): with gr.Column(scale=1): with gr.Blocks(): with gr.Row(equal_height=True): with gr.Column(scale=1): upload_file = gr.File( label=_("Upload File"), file_count="single", file_types=[".txt", ".json", ".jsonl", ".csv"], interactive=True, ) examples_dir = os.path.join(root_dir, "webui", "examples") gr.Examples( examples=[ [os.path.join(examples_dir, "txt_demo.txt")], [os.path.join(examples_dir, "jsonl_demo.jsonl")], [os.path.join(examples_dir, "json_demo.json")], [os.path.join(examples_dir, "csv_demo.csv")], ], inputs=upload_file, label=_("Example Files"), examples_per_page=4, ) with gr.Column(scale=1): with gr.Blocks(): preview_code = gr.Code( label=_("File Preview"), interactive=False, visible=True, elem_id="preview_code", ) preview_df = gr.DataFrame( label=_("File Preview"), interactive=False, visible=False, elem_id="preview_df", ) with gr.Accordion(label=_("Split Config"), open=False): gr.Markdown(value=_("Split Config Info")) with gr.Row(equal_height=True): with gr.Column(scale=1): chunk_size = gr.Slider( label=_("Chunk Size"), minimum=256, maximum=4096, value=1024, step=256, interactive=True, info=_("Chunk Size Info"), ) with gr.Column(scale=1): chunk_overlap = gr.Slider( label=_("Chunk Overlap"), minimum=0, maximum=500, value=100, step=100, interactive=True, info=_("Chunk Overlap Info"), ) with gr.Accordion( label=_("Quiz & Judge Config"), open=False, visible=False ) as quiz_accordion: gr.Markdown(value=_("Quiz & Judge Config Info")) quiz_samples = gr.Number( label=_("Quiz Samples"), value=2, minimum=1, interactive=True, info=_("Quiz Samples Info"), ) with gr.Accordion(label=_("Partition Config"), open=False): gr.Markdown(value=_("Partition Config Info")) partition_method = gr.Dropdown( label=_("Partition Method"), choices=["dfs", "bfs", "ece", "leiden"], value="ece", interactive=True, info=_("Which algorithm to use for graph partitioning."), ) # DFS method parameters with gr.Group(visible=False) as dfs_group: gr.Markdown(_("DFS intro")) dfs_max_units = gr.Slider( label=_("Max Units Per Community"), minimum=1, maximum=100, value=5, step=1, interactive=True, info=_("Max Units Per Community Info"), ) # BFS method parameters with gr.Group(visible=False) as bfs_group: gr.Markdown(_("BFS intro")) bfs_max_units = gr.Slider( label=_("Max Units Per Community"), minimum=1, maximum=100, value=5, step=1, interactive=True, info=_("Max Units Per Community Info"), ) # Leiden method parameters with gr.Group(visible=False) as leiden_group: gr.Markdown(_("Leiden intro")) leiden_max_size = gr.Slider( label=_("Maximum Size of Communities"), minimum=1, maximum=100, value=20, step=1, interactive=True, info=_("Maximum Size of Communities Info"), ) leiden_use_lcc = gr.Checkbox( label=_("Use Largest Connected Component"), value=False, interactive=True, info=_("Use Largest Connected Component Info"), ) leiden_random_seed = gr.Number( label=_("Random Seed"), value=42, precision=0, interactive=True, info=_("Random Seed Info"), ) # ECE method parameters with gr.Group(visible=True) as ece_group: gr.Markdown(_("ECE intro")) ece_max_units = gr.Slider( label=_("Max Units Per Community"), minimum=1, maximum=100, value=20, step=1, interactive=True, info=_("Max Units Per Community Info"), ) ece_min_units = gr.Slider( label=_("Min Units Per Community"), minimum=1, maximum=100, value=3, step=1, interactive=True, info=_("Min Units Per Community Info"), ) ece_max_tokens = gr.Slider( label=_("Max Tokens Per Community"), minimum=512, maximum=20_480, value=10_240, step=512, interactive=True, info=_("Max Tokens Per Community Info"), ) ece_unit_sampling = gr.Radio( label=_("Unit Sampling Strategy"), choices=["random"], value="random", interactive=True, info=_("Unit Sampling Strategy Info"), ) def toggle_partition_params(method): dfs = method == "dfs" bfs = method == "bfs" leiden = method == "leiden" ece = method == "ece" return ( gr.update(visible=dfs), # dfs_group gr.update(visible=bfs), # bfs_group gr.update(visible=leiden), # leiden_group gr.update(visible=ece), # ece_group ) partition_method.change( fn=toggle_partition_params, inputs=partition_method, outputs=[dfs_group, bfs_group, leiden_group, ece_group], ) with gr.Accordion(label=_("Generation Config"), open=False): gr.Markdown(value=_("Generation Config Info")) mode = gr.Radio( choices=["atomic", "multi_hop", "aggregated", "CoT"], label=_("Mode"), value="aggregated", interactive=True, info=_("Mode Info"), ) data_format = gr.Radio( choices=["Alpaca", "Sharegpt", "ChatML"], label=_("Output Data Format"), value="Alpaca", interactive=True, info=_("Output Data Format Info"), ) with gr.Blocks(): token_counter = gr.DataFrame( label="Token Stats", headers=[ "Source Text Token Count", "Estimated Token Usage", "Token Used", ], datatype="str", interactive=False, visible=False, wrap=True, ) with gr.Blocks(): with gr.Row(equal_height=True): with gr.Column(): rpm = gr.Slider( label="RPM", minimum=10, maximum=10000, value=1000, step=100, interactive=True, visible=True, ) with gr.Column(): tpm = gr.Slider( label="TPM", minimum=5000, maximum=5000000, value=50000, step=1000, interactive=True, visible=True, ) with gr.Blocks(): with gr.Column(scale=1): output = gr.File( label=_("Output File"), file_count="single", interactive=False, ) submit_btn = gr.Button(_("Run GraphGen")) # Test Connection test_connection_btn.click( test_api_connection, inputs=[synthesizer_url, api_key, synthesizer_model], outputs=[], ) if if_trainee_model.value: test_connection_btn.click( test_api_connection, inputs=[trainee_url, api_key, trainee_model], outputs=[], ) if_trainee_model.change( lambda use_trainee: [gr.update(visible=use_trainee)] * 4, inputs=if_trainee_model, outputs=[ trainee_url, trainee_model, trainee_api_key, quiz_accordion, ], ) if_trainee_model.change( lambda on: ( gr.update( choices=["random"] if not on else ["random", "max_loss", "min_loss"], value="random", ) ), inputs=if_trainee_model, outputs=ece_unit_sampling, ) upload_file.change( preview_file, inputs=upload_file, outputs=[preview_code, preview_df] ).then( lambda x: gr.update(visible=True), inputs=upload_file, outputs=token_counter ).then( count_tokens, inputs=[upload_file, tokenizer, token_counter], outputs=token_counter, ) # run GraphGen submit_btn.click( lambda x: (gr.update(visible=False)), inputs=[token_counter], outputs=[token_counter], ) submit_btn.click( lambda *args: run_graphgen( WebuiParams(**dict(zip(WebuiParams.__annotations__, args))) ), inputs=[ if_trainee_model, upload_file, tokenizer, synthesizer_model, synthesizer_url, trainee_model, trainee_url, api_key, trainee_api_key, chunk_size, chunk_overlap, quiz_samples, partition_method, dfs_max_units, bfs_max_units, leiden_max_size, leiden_use_lcc, leiden_random_seed, ece_max_units, ece_min_units, ece_max_tokens, ece_unit_sampling, mode, data_format, rpm, tpm, token_counter, ], outputs=[output, token_counter], ) if __name__ == "__main__": demo.queue(api_open=False, default_concurrency_limit=2) demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)