File size: 18,751 Bytes
acd7cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import asyncio
import gradio as gr

from tqdm.asyncio import tqdm as tqdm_async

from graphgen.models import OpenAIModel, NetworkXStorage, TraverseStrategy, Tokenizer, JsonKVStorage
from graphgen.templates import ANSWER_REPHRASING_PROMPT, QUESTION_GENERATION_PROMPT, MULTI_HOP_GENERATION_PROMPT
from graphgen.utils import detect_main_language, compute_content_hash, logger
from graphgen.operators.split_graph import get_batches_with_strategy


async def _pre_tokenize(graph_storage: NetworkXStorage,
                        tokenizer: Tokenizer,
                        edges: list,
                        nodes: list) -> tuple:

    sem = asyncio.Semaphore(1000)
    async def handle_edge(edge: tuple) -> tuple:
        async with sem:
            if 'length' not in edge[2]:
                edge[2]['length'] = len(
                    await asyncio.get_event_loop().run_in_executor(None,
                                                                   tokenizer.encode_string,
                                                                   edge[2]['description']))
            return edge

    async def handle_node(node: dict) -> dict:
        async with sem:
            if 'length' not in node[1]:
                node[1]['length'] = len(
                    await asyncio.get_event_loop().run_in_executor(None,
                                                                   tokenizer.encode_string,
                                                                   node[1]['description']))
            return node

    new_edges = []
    new_nodes = []

    for result in tqdm_async(asyncio.as_completed([handle_edge(edge) for edge in edges]),
                             total=len(edges), desc="Pre-tokenizing edges"):
        new_edge = await result
        await graph_storage.update_edge(new_edge[0], new_edge[1], new_edge[2])
        new_edges.append(new_edge)

    for result in tqdm_async(asyncio.as_completed([handle_node(node) for node in nodes]),
                             total=len(nodes), desc="Pre-tokenizing nodes"):
        new_node = await result
        await graph_storage.update_node(new_node[0], new_node[1])
        new_nodes.append(new_node)

    await graph_storage.index_done_callback()
    return new_edges, new_nodes

async def _construct_rephrasing_prompt(_process_nodes: list,
                                       _process_edges: list,
                                       text_chunks_storage: JsonKVStorage,
                                       add_context: bool = False
                                       ) -> str:
    entities = [
        f"{_process_node['node_id']}: {_process_node['description']}" for _process_node in _process_nodes
    ]
    relations = [
        f"{_process_edge[0]} -- {_process_edge[1]}: {_process_edge[2]['description']}"
        for _process_edge in _process_edges
    ]

    entities_str = "\n".join([f"{index + 1}. {entity}" for index, entity in enumerate(entities)])
    relations_str = "\n".join([f"{index + 1}. {relation}" for index, relation in enumerate(relations)])
    language = "Chinese" if detect_main_language(entities_str + relations_str) == "zh" else "English"

    if add_context:
        original_ids = ([node['source_id'].split('<SEP>')[0] for node in _process_nodes] +
                        [edge[2]['source_id'].split('<SEP>')[0] for edge in _process_edges])

        original_ids = list(set(original_ids))
        original_text = await text_chunks_storage.get_by_ids(original_ids)
        original_text = "\n".join([f"{index + 1}. {text['content']}" for index, text in enumerate(original_text)])

        prompt = ANSWER_REPHRASING_PROMPT[language]['CONTEXT_TEMPLATE'].format(
            language=language,
            original_text=original_text,
            entities=entities_str,
            relationships=relations_str
        )
        return prompt

    prompt = ANSWER_REPHRASING_PROMPT[language]['TEMPLATE'].format(
        language=language,
        entities=entities_str,
        relationships=relations_str
    )
    return prompt

def get_loss_tercile(losses: list) -> (float, float):
    losses = sorted(losses)
    q1_index = int(len(losses) * (1 / 3))
    q2_index = int(len(losses) * (2 / 3))

    return losses[q1_index], losses[q2_index]

def get_average_loss(batch: tuple, loss_strategy: str) -> float:
    if loss_strategy == "only_edge":
        return sum(edge[2]['loss'] for edge in batch[1]) / len(batch[1])
    if loss_strategy == "both":
        return sum(edge[2]['loss'] for edge in batch[1]) + sum(node['loss'] for node in batch[0]) / \
               (len(batch[0]) + len(batch[1]))
    raise ValueError("Invalid loss strategy")

def _post_process_synthetic_data(data):
    block = data.split("\n\n")
    qas = []
    for line in block:
        if "Question:" in line and "Answer:" in line:
            question = line.split("Question:")[1].split("Answer:")[0].strip()
            answer = line.split("Answer:")[1].strip()
            qas.append({
                "question": question,
                "answer": answer
            })
        elif "问题:" in line and "答案:" in line:
            question = line.split("问题:")[1].split("答案:")[0].strip()
            answer = line.split("答案:")[1].strip()
            qas.append({
                "question": question,
                "answer": answer
            })
        elif "问题:" in line and "回答:" in line:
            question = line.split("问题:")[1].split("回答:")[0].strip()
            answer = line.split("回答:")[1].strip()
            qas.append({
                "question": question,
                "answer": answer
            })
    return qas

async def traverse_graph_by_edge(
    llm_client: OpenAIModel,
    tokenizer: Tokenizer,
    graph_storage: NetworkXStorage,
    traverse_strategy: TraverseStrategy,
    text_chunks_storage: JsonKVStorage,
    progress_bar: gr.Progress = None,
    max_concurrent: int = 1000
) -> dict:
    """
    Traverse the graph

    :param llm_client
    :param tokenizer
    :param graph_storage
    :param traverse_strategy
    :param text_chunks_storage
    :param progress_bar
    :param max_concurrent
    :return: question and answer
    """

    semaphore = asyncio.Semaphore(max_concurrent)

    async def _process_nodes_and_edges(
            _process_nodes: list,
            _process_edges: list,
    ) -> str:
        prompt = await _construct_rephrasing_prompt(
            _process_nodes,
            _process_edges,
            text_chunks_storage,
            add_context = False
        )
        context = await llm_client.generate_answer(prompt)

        # post-process the context
        if context.startswith("Rephrased Text:"):
            context = context[len("Rephrased Text:"):].strip()
        elif context.startswith("重述文本:"):
            context = context[len("重述文本:"):].strip()

        return context

    async def _process_single_batch(
        _process_batch: tuple,
        question_type: str = "single"
    ) -> dict:
        async with semaphore:
            context = await _process_nodes_and_edges(
                _process_batch[0],
                _process_batch[1],
            )

            language = "Chinese" if detect_main_language(context) == "zh" else "English"
            pre_length = sum(node['length'] for node in _process_batch[0]) \
                         + sum(edge[2]['length'] for edge in _process_batch[1])

            if question_type == "single":
                question = await llm_client.generate_answer(
                    QUESTION_GENERATION_PROMPT[language]['SINGLE_TEMPLATE'].format(
                        answer=context
                    )
                )
                if question.startswith("Question:"):
                    question = question[len("Question:"):].strip()
                elif question.startswith("问题:"):
                    question = question[len("问题:"):].strip()

                logger.info("%d nodes and %d edges processed", len(_process_batch[0]), len(_process_batch[1]))
                logger.info("Pre-length: %s", pre_length)
                logger.info("Question: %s", question)
                logger.info("Answer: %s", context)

                return {
                    compute_content_hash(context): {
                        "question": question,
                        "answer": context,
                        "loss": get_average_loss(_process_batch, traverse_strategy.loss_strategy)
                    }
                }

            content = await llm_client.generate_answer(
                QUESTION_GENERATION_PROMPT[language]['MULTI_TEMPLATE'].format(
                    doc=context
                )
            )
            qas = _post_process_synthetic_data(content)

            if len(qas) == 0:
                print(content)
                logger.error("Error occurred while processing batch, question or answer is None")
                return {}

            final_results = {}
            logger.info("%d nodes and %d edges processed", len(_process_batch[0]), len(_process_batch[1]))
            logger.info("Pre-length: %s", pre_length)
            for qa in qas:
                logger.info("Question: %s", qa['question'])
                logger.info("Answer: %s", qa['answer'])
                final_results[compute_content_hash(qa['question'])] = {
                    "question": qa['question'],
                    "answer": qa['answer'],
                    "loss": get_average_loss(_process_batch, traverse_strategy.loss_strategy)
                }
            return final_results

    results = {}
    edges = list(await graph_storage.get_all_edges())
    nodes = list(await graph_storage.get_all_nodes())

    edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes)

    processing_batches = await get_batches_with_strategy(
        nodes,
        edges,
        graph_storage,
        traverse_strategy
    )

    for result in tqdm_async(asyncio.as_completed(
        [_process_single_batch(batch) for batch in processing_batches]
    ), total=len(processing_batches), desc="[4/4]Generating QAs"):
        try:
            if progress_bar is not None:
                progress_bar(len(results) / len(processing_batches), desc="[4/4]Generating QAs")
            results.update(await result)
            if progress_bar is not None and len(results) == len(processing_batches):
                progress_bar(1, desc="[4/4]Generating QAs")
        except Exception as e: # pylint: disable=broad-except
            logger.error("Error occurred while generating QA: %s", e)

    return results


async def traverse_graph_atomically(
    llm_client: OpenAIModel,
    tokenizer: Tokenizer,
    graph_storage: NetworkXStorage,
    traverse_strategy: TraverseStrategy,
    text_chunks_storage: JsonKVStorage,
    progress_bar: gr.Progress = None,
    max_concurrent: int = 1000
) -> dict:
    """
    Traverse the graph atomicly

    :param llm_client
    :param tokenizer
    :param graph_storage
    :param traverse_strategy
    :param text_chunks_storage
    :param progress_bar
    :param max_concurrent
    :return: question and answer
    """
    assert traverse_strategy.qa_form == "atomic"

    semaphore = asyncio.Semaphore(max_concurrent)
    async def _generate_question(
        node_or_edge: tuple
    ):
        if len(node_or_edge) == 2:
            des = node_or_edge[0] + ": " + node_or_edge[1]['description']
            loss = node_or_edge[1]['loss']
        else:
            des = node_or_edge[2]['description']
            loss = node_or_edge[2]['loss']

        async with semaphore:
            try:
                language = "Chinese" if detect_main_language(des) == "zh" else "English"

                qa = await llm_client.generate_answer(
                    QUESTION_GENERATION_PROMPT[language]['SINGLE_QA_TEMPLATE'].format(
                        doc=des
                    )
                )

                if "Question:" in qa and "Answer:" in qa:
                    question = qa.split("Question:")[1].split("Answer:")[0].strip()
                    answer = qa.split("Answer:")[1].strip()
                elif "问题:" in qa and "答案:" in qa:
                    question = qa.split("问题:")[1].split("答案:")[0].strip()
                    answer = qa.split("答案:")[1].strip()
                else:
                    return {}

                question = question.strip("\"")
                answer = answer.strip("\"")

                logger.info("Question: %s", question)
                logger.info("Answer: %s", answer)
                return {
                    compute_content_hash(question): {
                        "question": question,
                        "answer": answer,
                        "loss": loss
                    }
                }
            except Exception as e: # pylint: disable=broad-except
                logger.error("Error occurred while generating question: %s", e)
                return {}

    results = {}
    edges = list(await graph_storage.get_all_edges())
    nodes = list(await graph_storage.get_all_nodes())

    edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes)

    tasks = []
    for node in nodes:
        if "<SEP>" in node[1]['description']:
            description_list = node[1]['description'].split("<SEP>")
            for item in description_list:
                tasks.append((node[0], {"description": item, 'loss': node[1]['loss']}))
        else:
            tasks.append((node[0], node[1]))
    for edge in edges:
        if "<SEP>" in edge[2]['description']:
            description_list = edge[2]['description'].split("<SEP>")
            for item in description_list:
                tasks.append((edge[0], edge[1], {"description": item, 'loss': edge[2]['loss']}))
        else:
            tasks.append((edge[0], edge[1], edge[2]))

    for result in tqdm_async(
        asyncio.as_completed([_generate_question(task) for task in tasks]),
        total=len(tasks),
        desc="[4/4]Generating QAs"
    ):
        try:
            if progress_bar is not None:
                progress_bar(len(results) / len(tasks), desc="[4/4]Generating QAs")
            results.update(await result)
            if progress_bar is not None and len(results) == len(tasks):
                progress_bar(1, desc="[4/4]Generating QAs")
        except Exception as e: # pylint: disable=broad-except
            logger.error("Error occurred while generating QA: %s", e)
    return results

async def traverse_graph_for_multi_hop(
    llm_client: OpenAIModel,
    tokenizer: Tokenizer,
    graph_storage: NetworkXStorage,
    traverse_strategy: TraverseStrategy,
    text_chunks_storage: JsonKVStorage,
    progress_bar: gr.Progress = None,
    max_concurrent: int = 1000
) -> dict:
    """
    Traverse the graph for multi-hop

    :param llm_client
    :param tokenizer
    :param graph_storage
    :param traverse_strategy
    :param text_chunks_storage
    :param progress_bar
    :param max_concurrent
    :return: question and answer
    """
    assert traverse_strategy.qa_form == "multi_hop"

    semaphore = asyncio.Semaphore(max_concurrent)

    results = {}
    edges = list(await graph_storage.get_all_edges())
    nodes = list(await graph_storage.get_all_nodes())

    edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes)

    processing_batches = await get_batches_with_strategy(
        nodes,
        edges,
        graph_storage,
        traverse_strategy
    )

    async def _process_single_batch(
        _process_batch: tuple
    ) -> dict:
        async with semaphore:
            try:
                language = "Chinese" if detect_main_language(_process_batch[0][0]['description']) == "zh" else "English"

                _process_nodes = _process_batch[0]
                _process_edges = _process_batch[1]

                entities = [
                    f"{_process_node['node_id']}: {_process_node['description']}" for _process_node in _process_nodes
                ]

                relations = [
                    f"{_process_edge[0]} -- {_process_edge[1]}: {_process_edge[2]['description']}"
                    for _process_edge in _process_edges
                ]

                entities_str = "\n".join([f"{index + 1}. {entity}" for index, entity in enumerate(entities)])
                relations_str = "\n".join([f"{index + 1}. {relation}" for index, relation in enumerate(relations)])

                prompt = MULTI_HOP_GENERATION_PROMPT[language].format(
                    entities=entities_str,
                    relationships=relations_str
                )

                context = await llm_client.generate_answer(prompt)

                # post-process the context
                if "Question:" in context and "Answer:" in context:
                    question = context.split("Question:")[1].split("Answer:")[0].strip()
                    answer = context.split("Answer:")[1].strip()
                elif "问题:" in context and "答案:" in context:
                    question = context.split("问题:")[1].split("答案:")[0].strip()
                    answer = context.split("答案:")[1].strip()
                else:
                    return {}

                question = question.strip("\"")
                answer = answer.strip("\"")

                logger.info("Question: %s", question)
                logger.info("Answer: %s", answer)

                return {
                    compute_content_hash(question): {
                        "question": question,
                        "answer": answer,
                        "loss": get_average_loss(_process_batch, traverse_strategy.loss_strategy),
                    }
                }

            except Exception as e: # pylint: disable=broad-except
                logger.error("Error occurred while processing batch: %s", e)
                return {}

    async for result in tqdm_async(
        asyncio.as_completed([_process_single_batch(batch) for batch in processing_batches]),
        total=len(processing_batches),
        desc="[4/4]Generating QAs"
    ):
        try:
            if progress_bar is not None:
                progress_bar(len(results) / len(processing_batches), desc="[4/4]Generating QAs")
            results.update(await result)
            if progress_bar is not None and len(results) == len(processing_batches):
                progress_bar(1, desc="[4/4]Generating QAs")
        except Exception as e: # pylint: disable=broad-except
            logger.error("Error occurred while generating QA: %s", e)
    return results