File size: 10,965 Bytes
acd7cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Adapt from https://github.com/HKUDS/LightRAG

import asyncio
import os
import time
from dataclasses import dataclass, field
from typing import List, Union, cast

import gradio as gr
from tqdm.asyncio import tqdm as tqdm_async

from .models import (
    Chunk,
    JsonKVStorage,
    NetworkXStorage,
    OpenAIModel,
    Tokenizer,
    TraverseStrategy,
    WikiSearch,
)
from .models.storage.base_storage import StorageNameSpace
from .operators import (
    extract_kg,
    judge_statement,
    quiz,
    search_wikipedia,
    skip_judge_statement,
    traverse_graph_atomically,
    traverse_graph_by_edge,
    traverse_graph_for_multi_hop,
)
from .utils import compute_content_hash, create_event_loop, logger

sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))

@dataclass
class GraphGen:
    unique_id: int = int(time.time())
    working_dir: str = os.path.join(sys_path, "cache")

    # text chunking
    chunk_size: int = 1024
    chunk_overlap_size: int = 100

    # llm
    synthesizer_llm_client: OpenAIModel = None
    trainee_llm_client: OpenAIModel = None
    tokenizer_instance: Tokenizer = None

    # web search
    if_web_search: bool = False
    wiki_client: WikiSearch = field(default_factory=WikiSearch)

    # traverse strategy
    traverse_strategy: TraverseStrategy = field(default_factory=TraverseStrategy)

    # webui
    progress_bar: gr.Progress = None

    def __post_init__(self):
        self.full_docs_storage: JsonKVStorage = JsonKVStorage(
            self.working_dir, namespace="full_docs"
        )
        self.text_chunks_storage: JsonKVStorage = JsonKVStorage(
            self.working_dir, namespace="text_chunks"
        )
        self.wiki_storage: JsonKVStorage = JsonKVStorage(
            self.working_dir, namespace="wiki"
        )
        self.graph_storage: NetworkXStorage = NetworkXStorage(
            self.working_dir, namespace="graph"
        )
        self.rephrase_storage: JsonKVStorage = JsonKVStorage(
            self.working_dir, namespace="rephrase"
        )
        self.qa_storage: JsonKVStorage = JsonKVStorage(
            os.path.join(self.working_dir, "data", "graphgen", str(self.unique_id)), namespace=f"qa-{self.unique_id}"
        )

    async def async_split_chunks(self, data: Union[List[list], List[dict]], data_type: str) -> dict:
        # TODO: 是否进行指代消解
        if len(data) == 0:
            return {}

        new_docs = {}
        inserting_chunks = {}
        if data_type == "raw":
            assert isinstance(data, list) and isinstance(data[0], dict)
            # compute hash for each document
            new_docs = {
                compute_content_hash(doc['content'], prefix="doc-"): {'content': doc['content']} for doc in data
            }
            _add_doc_keys = await self.full_docs_storage.filter_keys(list(new_docs.keys()))
            new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
            if len(new_docs) == 0:
                logger.warning("All docs are already in the storage")
                return {}
            logger.info("[New Docs] inserting %d docs", len(new_docs))

            cur_index = 1
            doc_number = len(new_docs)
            async for doc_key, doc in tqdm_async(
                    new_docs.items(), desc="[1/4]Chunking documents", unit="doc"
                ):
                chunks = {
                    compute_content_hash(dp["content"], prefix="chunk-"): {
                        **dp,
                        'full_doc_id': doc_key
                    } for dp in self.tokenizer_instance.chunk_by_token_size(doc["content"],
                                                                            self.chunk_overlap_size, self.chunk_size)
                }
                inserting_chunks.update(chunks)

                if self.progress_bar is not None:
                    self.progress_bar(
                        cur_index / doc_number, f"Chunking {doc_key}"
                    )
                    cur_index += 1

            _add_chunk_keys = await self.text_chunks_storage.filter_keys(list(inserting_chunks.keys()))
            inserting_chunks = {k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys}
        elif data_type == "chunked":
            assert isinstance(data, list) and isinstance(data[0], list)
            new_docs = {
                compute_content_hash("".join(chunk['content']), prefix="doc-"): {'content': "".join(chunk['content'])}
                for doc in data for chunk in doc
            }
            _add_doc_keys = await self.full_docs_storage.filter_keys(list(new_docs.keys()))
            new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
            if len(new_docs) == 0:
                logger.warning("All docs are already in the storage")
                return {}
            logger.info("[New Docs] inserting %d docs", len(new_docs))
            async for doc in tqdm_async(data, desc="[1/4]Chunking documents", unit="doc"):
                doc_str = "".join([chunk['content'] for chunk in doc])
                for chunk in doc:
                    chunk_key = compute_content_hash(chunk['content'], prefix="chunk-")
                    inserting_chunks[chunk_key] = {
                        **chunk,
                        'full_doc_id': compute_content_hash(doc_str, prefix="doc-")
                    }
            _add_chunk_keys = await self.text_chunks_storage.filter_keys(list(inserting_chunks.keys()))
            inserting_chunks = {k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys}

        await self.full_docs_storage.upsert(new_docs)
        await self.text_chunks_storage.upsert(inserting_chunks)

        return inserting_chunks

    def insert(self, data: Union[List[list], List[dict]], data_type: str):
        loop = create_event_loop()
        loop.run_until_complete(self.async_insert(data, data_type))

    async def async_insert(self, data: Union[List[list], List[dict]], data_type: str):
        """

        insert chunks into the graph
        """

        inserting_chunks = await self.async_split_chunks(data, data_type)

        if len(inserting_chunks) == 0:
            logger.warning("All chunks are already in the storage")
            return
        logger.info("[New Chunks] inserting %d chunks", len(inserting_chunks))

        logger.info("[Entity and Relation Extraction]...")
        _add_entities_and_relations = await extract_kg(
            llm_client=self.synthesizer_llm_client,
            kg_instance=self.graph_storage,
            tokenizer_instance=self.tokenizer_instance,
            chunks=[Chunk(id=k, content=v['content']) for k, v in inserting_chunks.items()],
            progress_bar = self.progress_bar,
        )
        if not _add_entities_and_relations:
            logger.warning("No entities or relations extracted")
            return

        logger.info("[Wiki Search] is %s", 'enabled' if self.if_web_search else 'disabled')
        if self.if_web_search:
            logger.info("[Wiki Search]...")
            _add_wiki_data = await search_wikipedia(
                llm_client= self.synthesizer_llm_client,
                wiki_search_client=self.wiki_client,
                knowledge_graph_instance=_add_entities_and_relations
            )
            await self.wiki_storage.upsert(_add_wiki_data)

        await self._insert_done()

    async def _insert_done(self):
        tasks = []
        for storage_instance in [self.full_docs_storage, self.text_chunks_storage,
                                 self.graph_storage, self.wiki_storage]:
            if storage_instance is None:
                continue
            tasks.append(cast(StorageNameSpace, storage_instance).index_done_callback())
        await asyncio.gather(*tasks)

    def quiz(self, max_samples=1):
        loop = create_event_loop()
        loop.run_until_complete(self.async_quiz(max_samples))

    async def async_quiz(self, max_samples=1):
        await quiz(self.synthesizer_llm_client, self.graph_storage, self.rephrase_storage, max_samples)
        await self.rephrase_storage.index_done_callback()

    def judge(self, re_judge=False, skip=False):
        loop = create_event_loop()
        loop.run_until_complete(self.async_judge(re_judge, skip))

    async def async_judge(self, re_judge=False, skip=False):
        if skip:
            _update_relations = await skip_judge_statement(self.graph_storage)
        else:
            _update_relations = await judge_statement(self.trainee_llm_client, self.graph_storage,
                                                      self.rephrase_storage, re_judge)
        await _update_relations.index_done_callback()

    def traverse(self):
        loop = create_event_loop()
        loop.run_until_complete(self.async_traverse())

    async def async_traverse(self):
        if self.traverse_strategy.qa_form == "atomic":
            results = await traverse_graph_atomically(self.synthesizer_llm_client,
                                                      self.tokenizer_instance,
                                                      self.graph_storage,
                                                      self.traverse_strategy,
                                                      self.text_chunks_storage,
                                                      self.progress_bar)
        elif self.traverse_strategy.qa_form == "multi_hop":
            results = await traverse_graph_for_multi_hop(self.synthesizer_llm_client,
                                                            self.tokenizer_instance,
                                                            self.graph_storage,
                                                            self.traverse_strategy,
                                                            self.text_chunks_storage,
                                                            self.progress_bar)
        elif self.traverse_strategy.qa_form == "aggregated":
            results = await traverse_graph_by_edge(self.synthesizer_llm_client, self.tokenizer_instance,
                                                   self.graph_storage, self.traverse_strategy, self.text_chunks_storage,
                                                   self.progress_bar)
        else:
            raise ValueError(f"Unknown qa_form: {self.traverse_strategy.qa_form}")
        await self.qa_storage.upsert(results)
        await self.qa_storage.index_done_callback()

    def clear(self):
        loop = create_event_loop()
        loop.run_until_complete(self.async_clear())

    async def async_clear(self):
        await self.full_docs_storage.drop()
        await self.text_chunks_storage.drop()
        await self.wiki_storage.drop()
        await self.graph_storage.clear()
        await self.rephrase_storage.drop()
        await self.qa_storage.drop()

        logger.info("All caches are cleared")