Spaces:
Running
Running
File size: 10,965 Bytes
acd7cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Adapt from https://github.com/HKUDS/LightRAG
import asyncio
import os
import time
from dataclasses import dataclass, field
from typing import List, Union, cast
import gradio as gr
from tqdm.asyncio import tqdm as tqdm_async
from .models import (
Chunk,
JsonKVStorage,
NetworkXStorage,
OpenAIModel,
Tokenizer,
TraverseStrategy,
WikiSearch,
)
from .models.storage.base_storage import StorageNameSpace
from .operators import (
extract_kg,
judge_statement,
quiz,
search_wikipedia,
skip_judge_statement,
traverse_graph_atomically,
traverse_graph_by_edge,
traverse_graph_for_multi_hop,
)
from .utils import compute_content_hash, create_event_loop, logger
sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
@dataclass
class GraphGen:
unique_id: int = int(time.time())
working_dir: str = os.path.join(sys_path, "cache")
# text chunking
chunk_size: int = 1024
chunk_overlap_size: int = 100
# llm
synthesizer_llm_client: OpenAIModel = None
trainee_llm_client: OpenAIModel = None
tokenizer_instance: Tokenizer = None
# web search
if_web_search: bool = False
wiki_client: WikiSearch = field(default_factory=WikiSearch)
# traverse strategy
traverse_strategy: TraverseStrategy = field(default_factory=TraverseStrategy)
# webui
progress_bar: gr.Progress = None
def __post_init__(self):
self.full_docs_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="full_docs"
)
self.text_chunks_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="text_chunks"
)
self.wiki_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="wiki"
)
self.graph_storage: NetworkXStorage = NetworkXStorage(
self.working_dir, namespace="graph"
)
self.rephrase_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="rephrase"
)
self.qa_storage: JsonKVStorage = JsonKVStorage(
os.path.join(self.working_dir, "data", "graphgen", str(self.unique_id)), namespace=f"qa-{self.unique_id}"
)
async def async_split_chunks(self, data: Union[List[list], List[dict]], data_type: str) -> dict:
# TODO: 是否进行指代消解
if len(data) == 0:
return {}
new_docs = {}
inserting_chunks = {}
if data_type == "raw":
assert isinstance(data, list) and isinstance(data[0], dict)
# compute hash for each document
new_docs = {
compute_content_hash(doc['content'], prefix="doc-"): {'content': doc['content']} for doc in data
}
_add_doc_keys = await self.full_docs_storage.filter_keys(list(new_docs.keys()))
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All docs are already in the storage")
return {}
logger.info("[New Docs] inserting %d docs", len(new_docs))
cur_index = 1
doc_number = len(new_docs)
async for doc_key, doc in tqdm_async(
new_docs.items(), desc="[1/4]Chunking documents", unit="doc"
):
chunks = {
compute_content_hash(dp["content"], prefix="chunk-"): {
**dp,
'full_doc_id': doc_key
} for dp in self.tokenizer_instance.chunk_by_token_size(doc["content"],
self.chunk_overlap_size, self.chunk_size)
}
inserting_chunks.update(chunks)
if self.progress_bar is not None:
self.progress_bar(
cur_index / doc_number, f"Chunking {doc_key}"
)
cur_index += 1
_add_chunk_keys = await self.text_chunks_storage.filter_keys(list(inserting_chunks.keys()))
inserting_chunks = {k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys}
elif data_type == "chunked":
assert isinstance(data, list) and isinstance(data[0], list)
new_docs = {
compute_content_hash("".join(chunk['content']), prefix="doc-"): {'content': "".join(chunk['content'])}
for doc in data for chunk in doc
}
_add_doc_keys = await self.full_docs_storage.filter_keys(list(new_docs.keys()))
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All docs are already in the storage")
return {}
logger.info("[New Docs] inserting %d docs", len(new_docs))
async for doc in tqdm_async(data, desc="[1/4]Chunking documents", unit="doc"):
doc_str = "".join([chunk['content'] for chunk in doc])
for chunk in doc:
chunk_key = compute_content_hash(chunk['content'], prefix="chunk-")
inserting_chunks[chunk_key] = {
**chunk,
'full_doc_id': compute_content_hash(doc_str, prefix="doc-")
}
_add_chunk_keys = await self.text_chunks_storage.filter_keys(list(inserting_chunks.keys()))
inserting_chunks = {k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys}
await self.full_docs_storage.upsert(new_docs)
await self.text_chunks_storage.upsert(inserting_chunks)
return inserting_chunks
def insert(self, data: Union[List[list], List[dict]], data_type: str):
loop = create_event_loop()
loop.run_until_complete(self.async_insert(data, data_type))
async def async_insert(self, data: Union[List[list], List[dict]], data_type: str):
"""
insert chunks into the graph
"""
inserting_chunks = await self.async_split_chunks(data, data_type)
if len(inserting_chunks) == 0:
logger.warning("All chunks are already in the storage")
return
logger.info("[New Chunks] inserting %d chunks", len(inserting_chunks))
logger.info("[Entity and Relation Extraction]...")
_add_entities_and_relations = await extract_kg(
llm_client=self.synthesizer_llm_client,
kg_instance=self.graph_storage,
tokenizer_instance=self.tokenizer_instance,
chunks=[Chunk(id=k, content=v['content']) for k, v in inserting_chunks.items()],
progress_bar = self.progress_bar,
)
if not _add_entities_and_relations:
logger.warning("No entities or relations extracted")
return
logger.info("[Wiki Search] is %s", 'enabled' if self.if_web_search else 'disabled')
if self.if_web_search:
logger.info("[Wiki Search]...")
_add_wiki_data = await search_wikipedia(
llm_client= self.synthesizer_llm_client,
wiki_search_client=self.wiki_client,
knowledge_graph_instance=_add_entities_and_relations
)
await self.wiki_storage.upsert(_add_wiki_data)
await self._insert_done()
async def _insert_done(self):
tasks = []
for storage_instance in [self.full_docs_storage, self.text_chunks_storage,
self.graph_storage, self.wiki_storage]:
if storage_instance is None:
continue
tasks.append(cast(StorageNameSpace, storage_instance).index_done_callback())
await asyncio.gather(*tasks)
def quiz(self, max_samples=1):
loop = create_event_loop()
loop.run_until_complete(self.async_quiz(max_samples))
async def async_quiz(self, max_samples=1):
await quiz(self.synthesizer_llm_client, self.graph_storage, self.rephrase_storage, max_samples)
await self.rephrase_storage.index_done_callback()
def judge(self, re_judge=False, skip=False):
loop = create_event_loop()
loop.run_until_complete(self.async_judge(re_judge, skip))
async def async_judge(self, re_judge=False, skip=False):
if skip:
_update_relations = await skip_judge_statement(self.graph_storage)
else:
_update_relations = await judge_statement(self.trainee_llm_client, self.graph_storage,
self.rephrase_storage, re_judge)
await _update_relations.index_done_callback()
def traverse(self):
loop = create_event_loop()
loop.run_until_complete(self.async_traverse())
async def async_traverse(self):
if self.traverse_strategy.qa_form == "atomic":
results = await traverse_graph_atomically(self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar)
elif self.traverse_strategy.qa_form == "multi_hop":
results = await traverse_graph_for_multi_hop(self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar)
elif self.traverse_strategy.qa_form == "aggregated":
results = await traverse_graph_by_edge(self.synthesizer_llm_client, self.tokenizer_instance,
self.graph_storage, self.traverse_strategy, self.text_chunks_storage,
self.progress_bar)
else:
raise ValueError(f"Unknown qa_form: {self.traverse_strategy.qa_form}")
await self.qa_storage.upsert(results)
await self.qa_storage.index_done_callback()
def clear(self):
loop = create_event_loop()
loop.run_until_complete(self.async_clear())
async def async_clear(self):
await self.full_docs_storage.drop()
await self.text_chunks_storage.drop()
await self.wiki_storage.drop()
await self.graph_storage.clear()
await self.rephrase_storage.drop()
await self.qa_storage.drop()
logger.info("All caches are cleared")
|