Spaces:
Running
Running
File size: 20,188 Bytes
acd7cf4 e453a65 acd7cf4 e453a65 acd7cf4 e453a65 acd7cf4 e453a65 acd7cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import sys
import json
import tempfile
import pandas as pd
import gradio as gr
from gradio_i18n import Translate, gettext as _
from webui.base import GraphGenParams
from webui.test_api import test_api_connection
from webui.cache_utils import setup_workspace, cleanup_workspace
from webui.count_tokens import count_tokens
# pylint: disable=wrong-import-position
root_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_dir)
from graphgen.graphgen import GraphGen
from graphgen.models import OpenAIModel, Tokenizer, TraverseStrategy
from graphgen.models.llm.limitter import RPM, TPM
from graphgen.utils import set_logger
css = """
.center-row {
display: flex;
justify-content: center;
align-items: center;
}
"""
def init_graph_gen(config: dict, env: dict) -> GraphGen:
# Set up working directory
log_file, working_dir = setup_workspace(os.path.join(root_dir, "cache"))
set_logger(log_file, if_stream=False)
graph_gen = GraphGen(
working_dir=working_dir
)
# Set up LLM clients
graph_gen.synthesizer_llm_client = OpenAIModel(
model_name=env.get("SYNTHESIZER_MODEL", ""),
base_url=env.get("SYNTHESIZER_BASE_URL", ""),
api_key=env.get("SYNTHESIZER_API_KEY", ""),
request_limit=True,
rpm= RPM(env.get("RPM", 1000)),
tpm= TPM(env.get("TPM", 50000)),
)
graph_gen.trainee_llm_client = OpenAIModel(
model_name=env.get("TRAINEE_MODEL", ""),
base_url=env.get("TRAINEE_BASE_URL", ""),
api_key=env.get("TRAINEE_API_KEY", ""),
request_limit=True,
rpm= RPM(env.get("RPM", 1000)),
tpm= TPM(env.get("TPM", 50000)),
)
graph_gen.tokenizer_instance = Tokenizer(
config.get("tokenizer", "cl100k_base"))
strategy_config = config.get("traverse_strategy", {})
graph_gen.traverse_strategy = TraverseStrategy(
qa_form=config.get("qa_form"),
expand_method=strategy_config.get("expand_method"),
bidirectional=strategy_config.get("bidirectional"),
max_extra_edges=strategy_config.get("max_extra_edges"),
max_tokens=strategy_config.get("max_tokens"),
max_depth=strategy_config.get("max_depth"),
edge_sampling=strategy_config.get("edge_sampling"),
isolated_node_strategy=strategy_config.get("isolated_node_strategy"),
loss_strategy=str(strategy_config.get("loss_strategy"))
)
return graph_gen
# pylint: disable=too-many-statements
def run_graphgen(params, progress=gr.Progress()):
def sum_tokens(client):
return sum(u["total_tokens"] for u in client.token_usage)
config = {
"if_trainee_model": params.if_trainee_model,
"input_file": params.input_file,
"tokenizer": params.tokenizer,
"qa_form": params.qa_form,
"web_search": False,
"quiz_samples": params.quiz_samples,
"traverse_strategy": {
"bidirectional": params.bidirectional,
"expand_method": params.expand_method,
"max_extra_edges": params.max_extra_edges,
"max_tokens": params.max_tokens,
"max_depth": params.max_depth,
"edge_sampling": params.edge_sampling,
"isolated_node_strategy": params.isolated_node_strategy,
"loss_strategy": params.loss_strategy
},
"chunk_size": params.chunk_size,
}
env = {
"SYNTHESIZER_BASE_URL": params.synthesizer_url,
"SYNTHESIZER_MODEL": params.synthesizer_model,
"TRAINEE_BASE_URL": params.trainee_url,
"TRAINEE_MODEL": params.trainee_model,
"SYNTHESIZER_API_KEY": params.api_key,
"TRAINEE_API_KEY": params.trainee_api_key,
"RPM": params.rpm,
"TPM": params.tpm,
}
# Test API connection
test_api_connection(env["SYNTHESIZER_BASE_URL"],
env["SYNTHESIZER_API_KEY"], env["SYNTHESIZER_MODEL"])
if config['if_trainee_model']:
test_api_connection(env["TRAINEE_BASE_URL"],
env["TRAINEE_API_KEY"], env["TRAINEE_MODEL"])
# Initialize GraphGen
graph_gen = init_graph_gen(config, env)
graph_gen.clear()
graph_gen.progress_bar = progress
try:
# Load input data
file = config['input_file']
if isinstance(file, list):
file = file[0]
data = []
if file.endswith(".jsonl"):
data_type = "raw"
with open(file, "r", encoding='utf-8') as f:
data.extend(json.loads(line) for line in f)
elif file.endswith(".json"):
data_type = "chunked"
with open(file, "r", encoding='utf-8') as f:
data.extend(json.load(f))
elif file.endswith(".txt"):
# 读取文件后根据chunk_size转成raw格式的数据
data_type = "raw"
content = ""
with open(file, "r", encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
content += line.strip() + " "
size = int(config.get("chunk_size", 512))
chunks = [
content[i:i + size] for i in range(0, len(content), size)
]
data.extend([{"content": chunk} for chunk in chunks])
else:
raise ValueError(f"Unsupported file type: {file}")
# Process the data
graph_gen.insert(data, data_type)
if config['if_trainee_model']:
# Generate quiz
graph_gen.quiz(max_samples=config['quiz_samples'])
# Judge statements
graph_gen.judge()
else:
graph_gen.traverse_strategy.edge_sampling = "random"
# Skip judge statements
graph_gen.judge(skip=True)
# Traverse graph
graph_gen.traverse()
# Save output
output_data = graph_gen.qa_storage.data
with tempfile.NamedTemporaryFile(
mode="w",
suffix=".jsonl",
delete=False,
encoding="utf-8") as tmpfile:
json.dump(output_data, tmpfile, ensure_ascii=False)
output_file = tmpfile.name
synthesizer_tokens = sum_tokens(graph_gen.synthesizer_llm_client)
trainee_tokens = sum_tokens(graph_gen.trainee_llm_client) if config['if_trainee_model'] else 0
total_tokens = synthesizer_tokens + trainee_tokens
data_frame = params.token_counter
try:
_update_data = [
[
data_frame.iloc[0, 0],
data_frame.iloc[0, 1],
str(total_tokens)
]
]
new_df = pd.DataFrame(
_update_data,
columns=data_frame.columns
)
data_frame = new_df
except Exception as e:
raise gr.Error(f"DataFrame operation error: {str(e)}")
return output_file, gr.DataFrame(label='Token Stats',
headers=["Source Text Token Count", "Expected Token Usage", "Token Used"],
datatype="str",
interactive=False,
value=data_frame,
visible=True,
wrap=True)
except Exception as e: # pylint: disable=broad-except
raise gr.Error(f"Error occurred: {str(e)}")
finally:
# Clean up workspace
cleanup_workspace(graph_gen.working_dir)
with (gr.Blocks(title="GraphGen Demo", theme=gr.themes.Glass(),
css=css) as demo):
# Header
gr.Image(value="https://github.com/open-sciencelab/GraphGen/blob/main/resources/images/logo.png?raw=true",
label="GraphGen Banner",
elem_id="banner",
interactive=False,
container=False,
show_download_button=False,
show_fullscreen_button=False)
lang_btn = gr.Radio(
choices=[
("English", "en"),
("简体中文", "zh"),
],
value="en",
# label=_("Language"),
render=False,
container=False,
elem_classes=["center-row"],
)
gr.HTML("""
<div style="display: flex; gap: 8px; margin-left: auto; align-items: center; justify-content: center;">
<a href="https://github.com/open-sciencelab/GraphGen/releases">
<img src="https://img.shields.io/badge/Version-v0.1.0-blue" alt="Version">
</a>
<a href="https://graphgen-docs.example.com">
<img src="https://img.shields.io/badge/Docs-Latest-brightgreen" alt="Documentation">
</a>
<a href="https://github.com/open-sciencelab/GraphGen/issues/10">
<img src="https://img.shields.io/github/stars/open-sciencelab/GraphGen?style=social" alt="GitHub Stars">
</a>
<a href="https://arxiv.org/abs/2505.20416">
<img src="https://img.shields.io/badge/arXiv-pdf-yellow" alt="arXiv">
</a>
</div>
""")
with Translate(
os.path.join(root_dir, 'webui', 'translation.json'),
lang_btn,
placeholder_langs=["en", "zh"],
persistant=
False, # True to save the language setting in the browser. Requires gradio >= 5.6.0
):
lang_btn.render()
gr.Markdown(
value = "# " + _("Title") + "\n\n" + \
"### [GraphGen](https://github.com/open-sciencelab/GraphGen) " + _("Intro")
)
if_trainee_model = gr.Checkbox(label=_("Use Trainee Model"),
value=False,
interactive=True)
with gr.Accordion(label=_("Model Config"), open=False):
synthesizer_url = gr.Textbox(label="Synthesizer URL",
value="https://api.siliconflow.cn/v1",
info=_("Synthesizer URL Info"),
interactive=True)
synthesizer_model = gr.Textbox(label="Synthesizer Model",
value="Qwen/Qwen2.5-7B-Instruct",
info=_("Synthesizer Model Info"),
interactive=True)
trainee_url = gr.Textbox(label="Trainee URL",
value="https://api.siliconflow.cn/v1",
info=_("Trainee URL Info"),
interactive=True,
visible=if_trainee_model.value is True)
trainee_model = gr.Textbox(
label="Trainee Model",
value="Qwen/Qwen2.5-7B-Instruct",
info=_("Trainee Model Info"),
interactive=True,
visible=if_trainee_model.value is True)
trainee_api_key = gr.Textbox(
label=_("SiliconCloud Token for Trainee Model"),
type="password",
value="",
info="https://cloud.siliconflow.cn/account/ak",
visible=if_trainee_model.value is True)
with gr.Accordion(label=_("Generation Config"), open=False):
chunk_size = gr.Slider(label="Chunk Size",
minimum=256,
maximum=4096,
value=512,
step=256,
interactive=True)
tokenizer = gr.Textbox(label="Tokenizer",
value="cl100k_base",
interactive=True)
qa_form = gr.Radio(choices=["atomic", "multi_hop", "aggregated"],
label="QA Form",
value="aggregated",
interactive=True)
quiz_samples = gr.Number(label="Quiz Samples",
value=2,
minimum=1,
interactive=True,
visible=if_trainee_model.value is True)
bidirectional = gr.Checkbox(label="Bidirectional",
value=True,
interactive=True)
expand_method = gr.Radio(choices=["max_width", "max_tokens"],
label="Expand Method",
value="max_tokens",
interactive=True)
max_extra_edges = gr.Slider(
minimum=1,
maximum=10,
value=5,
label="Max Extra Edges",
step=1,
interactive=True,
visible=expand_method.value == "max_width")
max_tokens = gr.Slider(minimum=64,
maximum=1024,
value=256,
label="Max Tokens",
step=64,
interactive=True,
visible=(expand_method.value
!= "max_width"))
max_depth = gr.Slider(minimum=1,
maximum=5,
value=2,
label="Max Depth",
step=1,
interactive=True)
edge_sampling = gr.Radio(
choices=["max_loss", "min_loss", "random"],
label="Edge Sampling",
value="max_loss",
interactive=True,
visible=if_trainee_model.value is True)
isolated_node_strategy = gr.Radio(choices=["add", "ignore"],
label="Isolated Node Strategy",
value="ignore",
interactive=True)
loss_strategy = gr.Radio(choices=["only_edge", "both"],
label="Loss Strategy",
value="only_edge",
interactive=True)
with gr.Row(equal_height=True):
with gr.Column(scale=3):
api_key = gr.Textbox(
label=_("SiliconCloud Token"),
type="password",
value="",
info="https://cloud.siliconflow.cn/account/ak")
with gr.Column(scale=1):
test_connection_btn = gr.Button(_("Test Connection"))
with gr.Blocks():
with gr.Row(equal_height=True):
with gr.Column():
rpm = gr.Slider(
label="RPM",
minimum=10,
maximum=10000,
value=1000,
step=100,
interactive=True,
visible=True)
with gr.Column():
tpm = gr.Slider(
label="TPM",
minimum=5000,
maximum=5000000,
value=50000,
step=1000,
interactive=True,
visible=True)
with gr.Blocks():
with gr.Row(equal_height=True):
with gr.Column(scale=1):
upload_file = gr.File(
label=_("Upload File"),
file_count="single",
file_types=[".txt", ".json", ".jsonl"],
interactive=True,
)
examples_dir = os.path.join(root_dir, 'webui', 'examples')
gr.Examples(examples=[
[os.path.join(examples_dir, "txt_demo.txt")],
[os.path.join(examples_dir, "raw_demo.jsonl")],
[os.path.join(examples_dir, "chunked_demo.json")],
],
inputs=upload_file,
label=_("Example Files"),
examples_per_page=3)
with gr.Column(scale=1):
output = gr.File(
label="Output(See Github FAQ)",
file_count="single",
interactive=False,
)
with gr.Blocks():
token_counter = gr.DataFrame(label='Token Stats',
headers=["Source Text Token Count", "Estimated Token Usage", "Token Used"],
datatype="str",
interactive=False,
visible=False,
wrap=True)
submit_btn = gr.Button(_("Run GraphGen"))
# Test Connection
test_connection_btn.click(
test_api_connection,
inputs=[synthesizer_url, api_key, synthesizer_model],
outputs=[])
if if_trainee_model.value:
test_connection_btn.click(test_api_connection,
inputs=[trainee_url, api_key, trainee_model],
outputs=[])
expand_method.change(lambda method:
(gr.update(visible=method == "max_width"),
gr.update(visible=method != "max_width")),
inputs=expand_method,
outputs=[max_extra_edges, max_tokens])
if_trainee_model.change(
lambda use_trainee: [gr.update(visible=use_trainee)] * 5,
inputs=if_trainee_model,
outputs=[trainee_url, trainee_model, quiz_samples, edge_sampling, trainee_api_key])
upload_file.change(
lambda x: (gr.update(visible=True)),
inputs=[upload_file],
outputs=[token_counter],
).then(
count_tokens,
inputs=[upload_file, tokenizer, token_counter],
outputs=[token_counter],
)
# run GraphGen
submit_btn.click(
lambda x: (gr.update(visible=False)),
inputs=[token_counter],
outputs=[token_counter],
)
submit_btn.click(
lambda *args: run_graphgen(GraphGenParams(
if_trainee_model=args[0],
input_file=args[1],
tokenizer=args[2],
qa_form=args[3],
bidirectional=args[4],
expand_method=args[5],
max_extra_edges=args[6],
max_tokens=args[7],
max_depth=args[8],
edge_sampling=args[9],
isolated_node_strategy=args[10],
loss_strategy=args[11],
synthesizer_url=args[12],
synthesizer_model=args[13],
trainee_model=args[14],
api_key=args[15],
chunk_size=args[16],
rpm=args[17],
tpm=args[18],
quiz_samples=args[19],
trainee_url=args[20],
trainee_api_key=args[21],
token_counter=args[22],
)),
inputs=[
if_trainee_model, upload_file, tokenizer, qa_form,
bidirectional, expand_method, max_extra_edges, max_tokens,
max_depth, edge_sampling, isolated_node_strategy,
loss_strategy, synthesizer_url, synthesizer_model, trainee_model,
api_key, chunk_size, rpm, tpm, quiz_samples, trainee_url, trainee_api_key, token_counter
],
outputs=[output, token_counter],
)
if __name__ == "__main__":
demo.queue(api_open=False, default_concurrency_limit=2)
demo.launch(server_name='0.0.0.0')
|