File size: 20,188 Bytes
acd7cf4
 
 
 
 
 
 
 
 
 
e453a65
 
 
 
acd7cf4
 
e453a65
acd7cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e453a65
acd7cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e453a65
acd7cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import os
import sys
import json
import tempfile

import pandas as pd
import gradio as gr

from gradio_i18n import Translate, gettext as _

from webui.base import GraphGenParams
from webui.test_api import test_api_connection
from webui.cache_utils import setup_workspace, cleanup_workspace
from webui.count_tokens import count_tokens

# pylint: disable=wrong-import-position
root_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_dir)

from graphgen.graphgen import GraphGen
from graphgen.models import OpenAIModel, Tokenizer, TraverseStrategy
from graphgen.models.llm.limitter import RPM, TPM
from graphgen.utils import set_logger


css = """
.center-row {
    display: flex;
    justify-content: center;
    align-items: center;
}
"""


def init_graph_gen(config: dict, env: dict) -> GraphGen:
    # Set up working directory
    log_file, working_dir = setup_workspace(os.path.join(root_dir, "cache"))

    set_logger(log_file, if_stream=False)
    graph_gen = GraphGen(
        working_dir=working_dir
    )

    # Set up LLM clients
    graph_gen.synthesizer_llm_client = OpenAIModel(
        model_name=env.get("SYNTHESIZER_MODEL", ""),
        base_url=env.get("SYNTHESIZER_BASE_URL", ""),
        api_key=env.get("SYNTHESIZER_API_KEY", ""),
        request_limit=True,
        rpm= RPM(env.get("RPM", 1000)),
        tpm= TPM(env.get("TPM", 50000)),
    )

    graph_gen.trainee_llm_client = OpenAIModel(
        model_name=env.get("TRAINEE_MODEL", ""),
        base_url=env.get("TRAINEE_BASE_URL", ""),
        api_key=env.get("TRAINEE_API_KEY", ""),
        request_limit=True,
        rpm= RPM(env.get("RPM", 1000)),
        tpm= TPM(env.get("TPM", 50000)),
    )

    graph_gen.tokenizer_instance = Tokenizer(
        config.get("tokenizer", "cl100k_base"))

    strategy_config = config.get("traverse_strategy", {})
    graph_gen.traverse_strategy = TraverseStrategy(
        qa_form=config.get("qa_form"),
        expand_method=strategy_config.get("expand_method"),
        bidirectional=strategy_config.get("bidirectional"),
        max_extra_edges=strategy_config.get("max_extra_edges"),
        max_tokens=strategy_config.get("max_tokens"),
        max_depth=strategy_config.get("max_depth"),
        edge_sampling=strategy_config.get("edge_sampling"),
        isolated_node_strategy=strategy_config.get("isolated_node_strategy"),
        loss_strategy=str(strategy_config.get("loss_strategy"))
    )

    return graph_gen

# pylint: disable=too-many-statements
def run_graphgen(params, progress=gr.Progress()):
    def sum_tokens(client):
        return sum(u["total_tokens"] for u in client.token_usage)

    config = {
        "if_trainee_model": params.if_trainee_model,
        "input_file": params.input_file,
        "tokenizer": params.tokenizer,
        "qa_form": params.qa_form,
        "web_search": False,
        "quiz_samples": params.quiz_samples,
        "traverse_strategy": {
            "bidirectional": params.bidirectional,
            "expand_method": params.expand_method,
            "max_extra_edges": params.max_extra_edges,
            "max_tokens": params.max_tokens,
            "max_depth": params.max_depth,
            "edge_sampling": params.edge_sampling,
            "isolated_node_strategy": params.isolated_node_strategy,
            "loss_strategy": params.loss_strategy
        },
        "chunk_size": params.chunk_size,
    }

    env = {
        "SYNTHESIZER_BASE_URL": params.synthesizer_url,
        "SYNTHESIZER_MODEL": params.synthesizer_model,
        "TRAINEE_BASE_URL": params.trainee_url,
        "TRAINEE_MODEL": params.trainee_model,
        "SYNTHESIZER_API_KEY": params.api_key,
        "TRAINEE_API_KEY": params.trainee_api_key,
        "RPM": params.rpm,
        "TPM": params.tpm,
    }

    # Test API connection
    test_api_connection(env["SYNTHESIZER_BASE_URL"],
                        env["SYNTHESIZER_API_KEY"], env["SYNTHESIZER_MODEL"])
    if config['if_trainee_model']:
        test_api_connection(env["TRAINEE_BASE_URL"],
                            env["TRAINEE_API_KEY"], env["TRAINEE_MODEL"])

    # Initialize GraphGen
    graph_gen = init_graph_gen(config, env)
    graph_gen.clear()

    graph_gen.progress_bar = progress

    try:
        # Load input data
        file = config['input_file']
        if isinstance(file, list):
            file = file[0]

        data = []

        if file.endswith(".jsonl"):
            data_type = "raw"
            with open(file, "r", encoding='utf-8') as f:
                data.extend(json.loads(line) for line in f)
        elif file.endswith(".json"):
            data_type = "chunked"
            with open(file, "r", encoding='utf-8') as f:
                data.extend(json.load(f))
        elif file.endswith(".txt"):
            # 读取文件后根据chunk_size转成raw格式的数据
            data_type = "raw"
            content = ""
            with open(file, "r", encoding='utf-8') as f:
                lines = f.readlines()
                for line in lines:
                    content += line.strip() + " "
            size = int(config.get("chunk_size", 512))
            chunks = [
                content[i:i + size] for i in range(0, len(content), size)
            ]
            data.extend([{"content": chunk} for chunk in chunks])
        else:
            raise ValueError(f"Unsupported file type: {file}")

        # Process the data
        graph_gen.insert(data, data_type)

        if config['if_trainee_model']:
            # Generate quiz
            graph_gen.quiz(max_samples=config['quiz_samples'])

            # Judge statements
            graph_gen.judge()
        else:
            graph_gen.traverse_strategy.edge_sampling = "random"
            # Skip judge statements
            graph_gen.judge(skip=True)

        # Traverse graph
        graph_gen.traverse()

        # Save output
        output_data = graph_gen.qa_storage.data
        with tempfile.NamedTemporaryFile(
                mode="w",
                suffix=".jsonl",
                delete=False,
                encoding="utf-8") as tmpfile:
            json.dump(output_data, tmpfile, ensure_ascii=False)
            output_file = tmpfile.name

        synthesizer_tokens = sum_tokens(graph_gen.synthesizer_llm_client)
        trainee_tokens = sum_tokens(graph_gen.trainee_llm_client) if config['if_trainee_model'] else 0
        total_tokens = synthesizer_tokens + trainee_tokens

        data_frame = params.token_counter
        try:
            _update_data = [
                [
                    data_frame.iloc[0, 0],
                    data_frame.iloc[0, 1],
                    str(total_tokens)
                ]
            ]
            new_df = pd.DataFrame(
                _update_data,
                columns=data_frame.columns
            )
            data_frame = new_df

        except Exception as e:
            raise gr.Error(f"DataFrame operation error: {str(e)}")

        return output_file, gr.DataFrame(label='Token Stats',
                         headers=["Source Text Token Count", "Expected Token Usage", "Token Used"],
                         datatype="str",
                         interactive=False,
                         value=data_frame,
                         visible=True,
                         wrap=True)

    except Exception as e:  # pylint: disable=broad-except
        raise gr.Error(f"Error occurred: {str(e)}")

    finally:
        # Clean up workspace
        cleanup_workspace(graph_gen.working_dir)

with (gr.Blocks(title="GraphGen Demo", theme=gr.themes.Glass(),
               css=css) as demo):
    # Header
    gr.Image(value="https://github.com/open-sciencelab/GraphGen/blob/main/resources/images/logo.png?raw=true",
             label="GraphGen Banner",
             elem_id="banner",
             interactive=False,
             container=False,
             show_download_button=False,
             show_fullscreen_button=False)
    lang_btn = gr.Radio(
        choices=[
            ("English", "en"),
            ("简体中文", "zh"),
        ],
        value="en",
        # label=_("Language"),
        render=False,
        container=False,
        elem_classes=["center-row"],
    )

    gr.HTML("""
    <div style="display: flex; gap: 8px; margin-left: auto; align-items: center; justify-content: center;">
        <a href="https://github.com/open-sciencelab/GraphGen/releases">
            <img src="https://img.shields.io/badge/Version-v0.1.0-blue" alt="Version">
        </a>
        <a href="https://graphgen-docs.example.com">
            <img src="https://img.shields.io/badge/Docs-Latest-brightgreen" alt="Documentation">
        </a>
        <a href="https://github.com/open-sciencelab/GraphGen/issues/10">
            <img src="https://img.shields.io/github/stars/open-sciencelab/GraphGen?style=social" alt="GitHub Stars">
        </a>
        <a href="https://arxiv.org/abs/2505.20416">
            <img src="https://img.shields.io/badge/arXiv-pdf-yellow" alt="arXiv">
        </a>
    </div>
    """)
    with Translate(
            os.path.join(root_dir, 'webui', 'translation.json'),
            lang_btn,
            placeholder_langs=["en", "zh"],
            persistant=
            False,  # True to save the language setting in the browser. Requires gradio >= 5.6.0
    ):
        lang_btn.render()

        gr.Markdown(
            value = "# " + _("Title") + "\n\n" + \
                "### [GraphGen](https://github.com/open-sciencelab/GraphGen) " + _("Intro")
        )

        if_trainee_model = gr.Checkbox(label=_("Use Trainee Model"),
                                       value=False,
                                       interactive=True)

        with gr.Accordion(label=_("Model Config"), open=False):
            synthesizer_url = gr.Textbox(label="Synthesizer URL",
                                  value="https://api.siliconflow.cn/v1",
                                  info=_("Synthesizer URL Info"),
                                  interactive=True)
            synthesizer_model = gr.Textbox(label="Synthesizer Model",
                                           value="Qwen/Qwen2.5-7B-Instruct",
                                           info=_("Synthesizer Model Info"),
                                           interactive=True)
            trainee_url = gr.Textbox(label="Trainee URL",
                                        value="https://api.siliconflow.cn/v1",
                                        info=_("Trainee URL Info"),
                                        interactive=True,
                                        visible=if_trainee_model.value is True)
            trainee_model = gr.Textbox(
                label="Trainee Model",
                value="Qwen/Qwen2.5-7B-Instruct",
                info=_("Trainee Model Info"),
                interactive=True,
                visible=if_trainee_model.value is True)
            trainee_api_key = gr.Textbox(
                    label=_("SiliconCloud Token for Trainee Model"),
                    type="password",
                    value="",
                    info="https://cloud.siliconflow.cn/account/ak",
                    visible=if_trainee_model.value is True)


        with gr.Accordion(label=_("Generation Config"), open=False):
            chunk_size = gr.Slider(label="Chunk Size",
                                   minimum=256,
                                   maximum=4096,
                                   value=512,
                                   step=256,
                                   interactive=True)
            tokenizer = gr.Textbox(label="Tokenizer",
                                   value="cl100k_base",
                                   interactive=True)
            qa_form = gr.Radio(choices=["atomic", "multi_hop", "aggregated"],
                               label="QA Form",
                               value="aggregated",
                               interactive=True)
            quiz_samples = gr.Number(label="Quiz Samples",
                                     value=2,
                                     minimum=1,
                                     interactive=True,
                                     visible=if_trainee_model.value is True)
            bidirectional = gr.Checkbox(label="Bidirectional",
                                        value=True,
                                        interactive=True)

            expand_method = gr.Radio(choices=["max_width", "max_tokens"],
                                     label="Expand Method",
                                     value="max_tokens",
                                     interactive=True)
            max_extra_edges = gr.Slider(
                minimum=1,
                maximum=10,
                value=5,
                label="Max Extra Edges",
                step=1,
                interactive=True,
                visible=expand_method.value == "max_width")
            max_tokens = gr.Slider(minimum=64,
                                   maximum=1024,
                                   value=256,
                                   label="Max Tokens",
                                   step=64,
                                   interactive=True,
                                   visible=(expand_method.value
                                            != "max_width"))

            max_depth = gr.Slider(minimum=1,
                                  maximum=5,
                                  value=2,
                                  label="Max Depth",
                                  step=1,
                                  interactive=True)
            edge_sampling = gr.Radio(
                choices=["max_loss", "min_loss", "random"],
                label="Edge Sampling",
                value="max_loss",
                interactive=True,
                visible=if_trainee_model.value is True)
            isolated_node_strategy = gr.Radio(choices=["add", "ignore"],
                                              label="Isolated Node Strategy",
                                              value="ignore",
                                              interactive=True)
            loss_strategy = gr.Radio(choices=["only_edge", "both"],
                                     label="Loss Strategy",
                                     value="only_edge",
                                     interactive=True)

        with gr.Row(equal_height=True):
            with gr.Column(scale=3):
                api_key = gr.Textbox(
                    label=_("SiliconCloud Token"),
                    type="password",
                    value="",
                    info="https://cloud.siliconflow.cn/account/ak")
            with gr.Column(scale=1):
                test_connection_btn = gr.Button(_("Test Connection"))

        with gr.Blocks():
            with gr.Row(equal_height=True):
                with gr.Column():
                    rpm = gr.Slider(
                        label="RPM",
                        minimum=10,
                        maximum=10000,
                        value=1000,
                        step=100,
                        interactive=True,
                        visible=True)
                with gr.Column():
                    tpm = gr.Slider(
                        label="TPM",
                        minimum=5000,
                        maximum=5000000,
                        value=50000,
                        step=1000,
                        interactive=True,
                        visible=True)


        with gr.Blocks():
            with gr.Row(equal_height=True):
                with gr.Column(scale=1):
                    upload_file = gr.File(
                        label=_("Upload File"),
                        file_count="single",
                        file_types=[".txt", ".json", ".jsonl"],
                        interactive=True,
                    )
                    examples_dir = os.path.join(root_dir, 'webui', 'examples')
                    gr.Examples(examples=[
                        [os.path.join(examples_dir, "txt_demo.txt")],
                        [os.path.join(examples_dir, "raw_demo.jsonl")],
                        [os.path.join(examples_dir, "chunked_demo.json")],
                    ],
                                inputs=upload_file,
                                label=_("Example Files"),
                                examples_per_page=3)
                with gr.Column(scale=1):
                    output = gr.File(
                        label="Output(See Github FAQ)",
                        file_count="single",
                        interactive=False,
                    )

        with gr.Blocks():
            token_counter = gr.DataFrame(label='Token Stats',
                         headers=["Source Text Token Count", "Estimated Token Usage", "Token Used"],
                         datatype="str",
                         interactive=False,
                         visible=False,
                         wrap=True)

        submit_btn = gr.Button(_("Run GraphGen"))

        # Test Connection
        test_connection_btn.click(
            test_api_connection,
            inputs=[synthesizer_url, api_key, synthesizer_model],
            outputs=[])

        if if_trainee_model.value:
            test_connection_btn.click(test_api_connection,
                                    inputs=[trainee_url, api_key, trainee_model],
                                    outputs=[])

        expand_method.change(lambda method:
                             (gr.update(visible=method == "max_width"),
                              gr.update(visible=method != "max_width")),
                             inputs=expand_method,
                             outputs=[max_extra_edges, max_tokens])

        if_trainee_model.change(
            lambda use_trainee: [gr.update(visible=use_trainee)] * 5,
            inputs=if_trainee_model,
            outputs=[trainee_url, trainee_model, quiz_samples, edge_sampling, trainee_api_key])

        upload_file.change(
            lambda x: (gr.update(visible=True)),
            inputs=[upload_file],
            outputs=[token_counter],
        ).then(
            count_tokens,
            inputs=[upload_file, tokenizer, token_counter],
            outputs=[token_counter],
        )

        # run GraphGen
        submit_btn.click(
            lambda x: (gr.update(visible=False)),
            inputs=[token_counter],
            outputs=[token_counter],
        )

        submit_btn.click(
            lambda *args: run_graphgen(GraphGenParams(
                if_trainee_model=args[0],
                input_file=args[1],
                tokenizer=args[2],
                qa_form=args[3],
                bidirectional=args[4],
                expand_method=args[5],
                max_extra_edges=args[6],
                max_tokens=args[7],
                max_depth=args[8],
                edge_sampling=args[9],
                isolated_node_strategy=args[10],
                loss_strategy=args[11],
                synthesizer_url=args[12],
                synthesizer_model=args[13],
                trainee_model=args[14],
                api_key=args[15],
                chunk_size=args[16],
                rpm=args[17],
                tpm=args[18],
                quiz_samples=args[19],
                trainee_url=args[20],
                trainee_api_key=args[21],
                token_counter=args[22],
            )),
            inputs=[
                if_trainee_model, upload_file, tokenizer, qa_form,
                bidirectional, expand_method, max_extra_edges, max_tokens,
                max_depth, edge_sampling, isolated_node_strategy,
                loss_strategy, synthesizer_url, synthesizer_model, trainee_model,
                api_key, chunk_size, rpm, tpm, quiz_samples, trainee_url, trainee_api_key, token_counter
            ],
            outputs=[output, token_counter],
        )

if __name__ == "__main__":
    demo.queue(api_open=False, default_concurrency_limit=2)
    demo.launch(server_name='0.0.0.0')