File size: 6,175 Bytes
da8d589
374f426
9d9fe0d
d2b7e94
 
 
374f426
d2b7e94
374f426
d2b7e94
 
374f426
 
d2b7e94
 
 
 
 
 
 
f83b1b7
374f426
 
 
 
 
ae79826
 
 
 
 
 
 
 
 
 
 
 
 
 
374f426
 
 
 
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374f426
 
 
da8d589
 
374f426
 
 
 
 
 
 
 
da8d589
503e823
da8d589
627d3d7
da8d589
 
374f426
503e823
ae79826
 
 
 
 
1df74c6
 
9d9fe0d
ae79826
374f426
 
 
 
 
 
 
 
 
 
da8d589
 
374f426
 
 
 
 
 
1df74c6
 
 
374f426
 
 
ae79826
 
 
 
 
 
 
 
 
 
374f426
f83b1b7
374f426
f83b1b7
 
503e823
374f426
 
da8d589
 
 
 
 
 
 
 
 
 
374f426
 
da8d589
 
 
1df74c6
 
9d9fe0d
374f426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8d589
374f426
 
 
 
 
da8d589
 
 
374f426
 
 
 
 
 
 
 
 
 
 
 
1df74c6
 
374f426
 
da8d589
 
 
ae79826
374f426
 
 
 
 
503e823
9d9fe0d
 
 
 
 
374f426
 
 
 
 
503e823
374f426
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from typing import Union

import gradio as gr
import numpy as np
import torch
import torch.profiler

from modules import refiner
from modules.api.utils import calc_spk_style
from modules.data import styles_mgr
from modules.Enhancer.ResembleEnhance import apply_audio_enhance as _apply_audio_enhance
from modules.normalization import text_normalize
from modules.SentenceSplitter import SentenceSplitter
from modules.speaker import Speaker, speaker_mgr
from modules.ssml_parser.SSMLParser import SSMLBreak, SSMLSegment, create_ssml_parser
from modules.synthesize_audio import synthesize_audio
from modules.SynthesizeSegments import SynthesizeSegments, combine_audio_segments
from modules.utils import audio
from modules.utils.hf import spaces
from modules.webui import webui_config


def get_speakers():
    return speaker_mgr.list_speakers()


def get_speaker_names() -> tuple[list[Speaker], list[str]]:
    speakers = get_speakers()

    def get_speaker_show_name(spk):
        if spk.gender == "*" or spk.gender == "":
            return spk.name
        return f"{spk.gender} : {spk.name}"

    speaker_names = [get_speaker_show_name(speaker) for speaker in speakers]
    speaker_names.sort(key=lambda x: x.startswith("*") and "-1" or x)

    return speakers, speaker_names


def get_styles():
    return styles_mgr.list_items()


def load_spk_info(file):
    if file is None:
        return "empty"
    try:

        spk: Speaker = Speaker.from_file(file)
        infos = spk.to_json()
        return f"""
- name: {infos.name}
- gender: {infos.gender}
- describe: {infos.describe}
    """.strip()
    except:
        return "load failed"


def segments_length_limit(
    segments: list[Union[SSMLBreak, SSMLSegment]], total_max: int
) -> list[Union[SSMLBreak, SSMLSegment]]:
    ret_segments = []
    total_len = 0
    for seg in segments:
        if isinstance(seg, SSMLBreak):
            ret_segments.append(seg)
            continue
        total_len += len(seg["text"])
        if total_len > total_max:
            break
        ret_segments.append(seg)
    return ret_segments


@torch.inference_mode()
@spaces.GPU(duration=120)
def apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance):
    return _apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance)


@torch.inference_mode()
@spaces.GPU(duration=120)
def synthesize_ssml(
    ssml: str,
    batch_size=4,
    enable_enhance=False,
    enable_denoise=False,
    eos: str = "[uv_break]",
    spliter_thr: int = 100,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        batch_size = int(batch_size)
    except Exception:
        batch_size = 8

    ssml = ssml.strip()

    if ssml == "":
        return None

    parser = create_ssml_parser()
    segments = parser.parse(ssml)
    max_len = webui_config.ssml_max
    segments = segments_length_limit(segments, max_len)

    if len(segments) == 0:
        return None

    synthesize = SynthesizeSegments(
        batch_size=batch_size, eos=eos, spliter_thr=spliter_thr
    )
    audio_segments = synthesize.synthesize_segments(segments)
    combined_audio = combine_audio_segments(audio_segments)

    sr = combined_audio.frame_rate
    audio_data, sr = apply_audio_enhance(
        audio.audiosegment_to_librosawav(combined_audio),
        sr,
        enable_denoise,
        enable_enhance,
    )

    # NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式
    audio_data = audio.audio_to_int16(audio_data)

    return sr, audio_data


# @torch.inference_mode()
@spaces.GPU(duration=120)
def tts_generate(
    text,
    temperature=0.3,
    top_p=0.7,
    top_k=20,
    spk=-1,
    infer_seed=-1,
    use_decoder=True,
    prompt1="",
    prompt2="",
    prefix="",
    style="",
    disable_normalize=False,
    batch_size=4,
    enable_enhance=False,
    enable_denoise=False,
    spk_file=None,
    spliter_thr: int = 100,
    eos: str = "[uv_break]",
    progress=gr.Progress(track_tqdm=True),
):
    try:
        batch_size = int(batch_size)
    except Exception:
        batch_size = 4

    max_len = webui_config.tts_max
    text = text.strip()[0:max_len]

    if text == "":
        return None

    if style == "*auto":
        style = None

    if isinstance(top_k, float):
        top_k = int(top_k)

    params = calc_spk_style(spk=spk, style=style)
    spk = params.get("spk", spk)

    infer_seed = infer_seed or params.get("seed", infer_seed)
    temperature = temperature or params.get("temperature", temperature)
    prefix = prefix or params.get("prefix", prefix)
    prompt1 = prompt1 or params.get("prompt1", "")
    prompt2 = prompt2 or params.get("prompt2", "")

    infer_seed = np.clip(infer_seed, -1, 2**32 - 1, out=None, dtype=np.float64)
    infer_seed = int(infer_seed)

    if not disable_normalize:
        text = text_normalize(text)

    if spk_file:
        spk = Speaker.from_file(spk_file)

    sample_rate, audio_data = synthesize_audio(
        text=text,
        temperature=temperature,
        top_P=top_p,
        top_K=top_k,
        spk=spk,
        infer_seed=infer_seed,
        use_decoder=use_decoder,
        prompt1=prompt1,
        prompt2=prompt2,
        prefix=prefix,
        batch_size=batch_size,
        end_of_sentence=eos,
        spliter_threshold=spliter_thr,
    )

    audio_data, sample_rate = apply_audio_enhance(
        audio_data, sample_rate, enable_denoise, enable_enhance
    )
    # NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式
    audio_data = audio.audio_to_int16(audio_data)
    return sample_rate, audio_data


@torch.inference_mode()
@spaces.GPU(duration=120)
def refine_text(
    text: str,
    prompt: str,
    progress=gr.Progress(track_tqdm=True),
):
    text = text_normalize(text)
    return refiner.refine_text(text, prompt=prompt)


@torch.inference_mode()
@spaces.GPU(duration=120)
def split_long_text(long_text_input):
    spliter = SentenceSplitter(webui_config.spliter_threshold)
    sentences = spliter.parse(long_text_input)
    sentences = [text_normalize(s) for s in sentences]
    data = []
    for i, text in enumerate(sentences):
        data.append([i, text, len(text)])
    return data