""" # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved COCO dataset which returns image_id for evaluation. Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py """ import torch import torch.utils.data import torchvision torchvision.disable_beta_transforms_warning() from torchvision import datapoints from pycocotools import mask as coco_mask from src.core import register __all__ = ['CocoDetection'] @register class CocoDetection(torchvision.datasets.CocoDetection): __inject__ = ['transforms'] __share__ = ['remap_mscoco_category'] def __init__(self, img_folder, ann_file, transforms, return_masks, remap_mscoco_category=False): super(CocoDetection, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks, remap_mscoco_category) self.img_folder = img_folder self.ann_file = ann_file self.return_masks = return_masks self.remap_mscoco_category = remap_mscoco_category def __getitem__(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = {'image_id': image_id, 'annotations': target} img, target = self.prepare(img, target) # ['boxes', 'masks', 'labels']: if 'boxes' in target: target['boxes'] = datapoints.BoundingBox( target['boxes'], format=datapoints.BoundingBoxFormat.XYXY, spatial_size=img.size[::-1]) # h w if 'masks' in target: target['masks'] = datapoints.Mask(target['masks']) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def extra_repr(self) -> str: s = f' img_folder: {self.img_folder}\n ann_file: {self.ann_file}\n' s += f' return_masks: {self.return_masks}\n' if hasattr(self, '_transforms') and self._transforms is not None: s += f' transforms:\n {repr(self._transforms)}' return s def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask(object): def __init__(self, return_masks=False, remap_mscoco_category=False): self.return_masks = return_masks self.remap_mscoco_category = remap_mscoco_category def __call__(self, image, target): w, h = image.size image_id = target["image_id"] image_id = torch.tensor([image_id]) anno = target["annotations"] anno = [obj for obj in anno if 'iscrowd' not in obj or obj['iscrowd'] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) if self.remap_mscoco_category: classes = [mscoco_category2label[obj["category_id"]] for obj in anno] else: classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) if self.return_masks: segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] if self.return_masks: masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes if self.return_masks: target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno]) target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(w), int(h)]) target["size"] = torch.as_tensor([int(w), int(h)]) return image, target mscoco_category2name = { 1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove', 41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse', 75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush' } mscoco_category2label = {k: i for i, k in enumerate(mscoco_category2name.keys())} mscoco_label2category = {v: k for k, v in mscoco_category2label.items()}