Delete src/zoo/rtdetr/rtdetr_decoder.py
Browse files- src/zoo/rtdetr/rtdetr_decoder.py +0 -627
src/zoo/rtdetr/rtdetr_decoder.py
DELETED
@@ -1,627 +0,0 @@
|
|
1 |
-
"""by lyuwenyu
|
2 |
-
"""
|
3 |
-
|
4 |
-
import math
|
5 |
-
import copy
|
6 |
-
from collections import OrderedDict
|
7 |
-
from typing import Optional, Tuple
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import torch.nn.functional as F
|
12 |
-
import torch.nn.init as init
|
13 |
-
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
14 |
-
from torch.nn.parameter import Parameter
|
15 |
-
|
16 |
-
from .denoising import get_contrastive_denoising_training_group
|
17 |
-
from .utils import deformable_attention_core_func, get_activation, inverse_sigmoid
|
18 |
-
from .utils import bias_init_with_prob
|
19 |
-
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
20 |
-
|
21 |
-
from src.core import register
|
22 |
-
|
23 |
-
import numpy as np
|
24 |
-
|
25 |
-
import scipy.linalg as sl
|
26 |
-
|
27 |
-
__all__ = ['RTDETRTransformer']
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
class MLP(nn.Module):
|
32 |
-
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'):
|
33 |
-
super().__init__()
|
34 |
-
self.num_layers = num_layers
|
35 |
-
h = [hidden_dim] * (num_layers - 1)
|
36 |
-
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
37 |
-
self.act = nn.Identity() if act is None else get_activation(act)
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
for i, layer in enumerate(self.layers):
|
41 |
-
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
42 |
-
return x
|
43 |
-
|
44 |
-
|
45 |
-
class CoPE(nn.Module):
|
46 |
-
def __init__(self,npos_max,head_dim):
|
47 |
-
super(CoPE, self).__init__()
|
48 |
-
self.npos_max = npos_max #?
|
49 |
-
self.pos_emb = nn.parameter.Parameter(torch.zeros(1,head_dim,npos_max))
|
50 |
-
|
51 |
-
def forward(self,query,attn_logits):
|
52 |
-
#compute positions
|
53 |
-
gates = torch.sigmoid(attn_logits) #sig(qk)
|
54 |
-
pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
|
55 |
-
pos = pos.clamp(max=self.npos_max-1)
|
56 |
-
#interpolate from integer positions
|
57 |
-
pos_ceil = pos.ceil().long()
|
58 |
-
pos_floor = pos.floor().long()
|
59 |
-
logits_int = torch.matmul(query,self.pos_emb)
|
60 |
-
logits_ceil = logits_int.gather(-1,pos_ceil)
|
61 |
-
logits_floor = logits_int.gather(-1,pos_floor)
|
62 |
-
w = pos-pos_floor
|
63 |
-
return logits_ceil*w+logits_floor*(1-w)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
class MSDeformableAttention(nn.Module):
|
69 |
-
def __init__(self, embed_dim=256, num_heads=8, num_levels=4, num_points=4,):
|
70 |
-
"""
|
71 |
-
Multi-Scale Deformable Attention Module
|
72 |
-
"""
|
73 |
-
super(MSDeformableAttention, self).__init__()
|
74 |
-
self.embed_dim = embed_dim
|
75 |
-
self.num_heads = num_heads
|
76 |
-
self.num_levels = num_levels
|
77 |
-
self.num_points = num_points
|
78 |
-
self.total_points = num_heads * num_levels * num_points
|
79 |
-
|
80 |
-
self.head_dim = embed_dim // num_heads
|
81 |
-
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
82 |
-
|
83 |
-
self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2,)
|
84 |
-
self.attention_weights = nn.Linear(embed_dim, self.total_points)
|
85 |
-
self.value_proj = nn.Linear(embed_dim, embed_dim)
|
86 |
-
self.output_proj = nn.Linear(embed_dim, embed_dim)
|
87 |
-
|
88 |
-
self.ms_deformable_attn_core = deformable_attention_core_func
|
89 |
-
|
90 |
-
self._reset_parameters()
|
91 |
-
|
92 |
-
|
93 |
-
def _reset_parameters(self):
|
94 |
-
# sampling_offsets
|
95 |
-
init.constant_(self.sampling_offsets.weight, 0)
|
96 |
-
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
|
97 |
-
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
98 |
-
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values
|
99 |
-
grid_init = grid_init.reshape(self.num_heads, 1, 1, 2).tile([1, self.num_levels, self.num_points, 1])
|
100 |
-
scaling = torch.arange(1, self.num_points + 1, dtype=torch.float32).reshape(1, 1, -1, 1)
|
101 |
-
grid_init *= scaling
|
102 |
-
self.sampling_offsets.bias.data[...] = grid_init.flatten()
|
103 |
-
|
104 |
-
# attention_weights
|
105 |
-
init.constant_(self.attention_weights.weight, 0)
|
106 |
-
init.constant_(self.attention_weights.bias, 0)
|
107 |
-
|
108 |
-
# proj
|
109 |
-
init.xavier_uniform_(self.value_proj.weight)
|
110 |
-
init.constant_(self.value_proj.bias, 0)
|
111 |
-
init.xavier_uniform_(self.output_proj.weight)
|
112 |
-
init.constant_(self.output_proj.bias, 0)
|
113 |
-
|
114 |
-
|
115 |
-
def forward(self,
|
116 |
-
query,
|
117 |
-
reference_points,
|
118 |
-
value,
|
119 |
-
value_spatial_shapes,
|
120 |
-
value_mask=None):
|
121 |
-
"""
|
122 |
-
Args:
|
123 |
-
query (Tensor): [bs, query_length, C]
|
124 |
-
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
125 |
-
bottom-right (1, 1), including padding area
|
126 |
-
value (Tensor): [bs, value_length, C]
|
127 |
-
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
128 |
-
value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
|
129 |
-
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
|
130 |
-
|
131 |
-
Returns:
|
132 |
-
output (Tensor): [bs, Length_{query}, C]
|
133 |
-
"""
|
134 |
-
bs, Len_q = query.shape[:2]
|
135 |
-
Len_v = value.shape[1]
|
136 |
-
|
137 |
-
value = self.value_proj(value)
|
138 |
-
if value_mask is not None:
|
139 |
-
value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
|
140 |
-
value *= value_mask
|
141 |
-
value = value.reshape(bs, Len_v, self.num_heads, self.head_dim)
|
142 |
-
|
143 |
-
sampling_offsets = self.sampling_offsets(query).reshape(
|
144 |
-
bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2)
|
145 |
-
attention_weights = self.attention_weights(query).reshape(
|
146 |
-
bs, Len_q, self.num_heads, self.num_levels * self.num_points)
|
147 |
-
attention_weights = F.softmax(attention_weights, dim=-1).reshape(
|
148 |
-
bs, Len_q, self.num_heads, self.num_levels, self.num_points)
|
149 |
-
|
150 |
-
if reference_points.shape[-1] == 2:
|
151 |
-
offset_normalizer = torch.tensor(value_spatial_shapes)
|
152 |
-
offset_normalizer = offset_normalizer.flip([1]).reshape(
|
153 |
-
1, 1, 1, self.num_levels, 1, 2)
|
154 |
-
sampling_locations = reference_points.reshape(
|
155 |
-
bs, Len_q, 1, self.num_levels, 1, 2
|
156 |
-
) + sampling_offsets / offset_normalizer
|
157 |
-
elif reference_points.shape[-1] == 4:
|
158 |
-
sampling_locations = (
|
159 |
-
reference_points[:, :, None, :, None, :2] + sampling_offsets /
|
160 |
-
self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5)
|
161 |
-
else:
|
162 |
-
raise ValueError(
|
163 |
-
"Last dim of reference_points must be 2 or 4, but get {} instead.".
|
164 |
-
format(reference_points.shape[-1]))
|
165 |
-
|
166 |
-
output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights)
|
167 |
-
|
168 |
-
output = self.output_proj(output)
|
169 |
-
|
170 |
-
return output
|
171 |
-
|
172 |
-
|
173 |
-
class TransformerDecoderLayer(nn.Module):
|
174 |
-
def __init__(self,
|
175 |
-
d_model=256,
|
176 |
-
n_head=8,
|
177 |
-
dim_feedforward=1024,
|
178 |
-
dropout=0.,
|
179 |
-
activation="relu",
|
180 |
-
n_levels=4,
|
181 |
-
n_points=4,):
|
182 |
-
super(TransformerDecoderLayer, self).__init__()
|
183 |
-
|
184 |
-
# self attention
|
185 |
-
self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True)
|
186 |
-
self.dropout1 = nn.Dropout(dropout)
|
187 |
-
self.norm1 = nn.LayerNorm(d_model)
|
188 |
-
|
189 |
-
# cross attention
|
190 |
-
self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points)
|
191 |
-
self.dropout2 = nn.Dropout(dropout)
|
192 |
-
self.norm2 = nn.LayerNorm(d_model)
|
193 |
-
|
194 |
-
# ffn
|
195 |
-
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
196 |
-
self.activation = getattr(F, activation)
|
197 |
-
self.dropout3 = nn.Dropout(dropout)
|
198 |
-
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
199 |
-
self.dropout4 = nn.Dropout(dropout)
|
200 |
-
self.norm3 = nn.LayerNorm(d_model)
|
201 |
-
|
202 |
-
self.cope = CoPE(12,d_model)
|
203 |
-
|
204 |
-
# self._reset_parameters()
|
205 |
-
|
206 |
-
# def _reset_parameters(self):
|
207 |
-
# linear_init_(self.linear1)
|
208 |
-
# linear_init_(self.linear2)
|
209 |
-
# xavier_uniform_(self.linear1.weight)
|
210 |
-
# xavier_uniform_(self.linear2.weight)
|
211 |
-
|
212 |
-
def with_pos_embed(self, tensor, pos):
|
213 |
-
return tensor if pos is None else tensor + pos
|
214 |
-
|
215 |
-
def forward_ffn(self, tgt):
|
216 |
-
return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
217 |
-
|
218 |
-
def forward(self,
|
219 |
-
tgt,
|
220 |
-
reference_points,
|
221 |
-
memory,
|
222 |
-
memory_spatial_shapes,
|
223 |
-
memory_level_start_index,
|
224 |
-
attn_mask=None,
|
225 |
-
memory_mask=None,
|
226 |
-
query_pos_embed=None):
|
227 |
-
# self attention
|
228 |
-
#print(query_pos_embed.shape)
|
229 |
-
qk = torch.bmm (tgt ,tgt.transpose(-1 ,-2))
|
230 |
-
mask = torch.tril(torch.ones_like(qk),diagonal=0)
|
231 |
-
mask = torch.log(mask)
|
232 |
-
query_pos_embed = self.cope(tgt,qk+mask) #position_embedding
|
233 |
-
|
234 |
-
|
235 |
-
n_tgt = tgt.cpu().detach().numpy()
|
236 |
-
|
237 |
-
itgt = tgt.new_tensor(np.array([sl.pinv(i) for i in n_tgt])) #inv_tgt
|
238 |
-
|
239 |
-
# print('qk:',qk.shape)
|
240 |
-
# print('tgt:',tgt.shape)
|
241 |
-
# print(([email protected](-1,-2)).shape)
|
242 |
-
# print('ik:',itgt.shape)
|
243 |
-
|
244 |
-
# print(torch.round(itgt@tgt))
|
245 |
-
# print([email protected](-1,-2))
|
246 |
-
|
247 |
-
k = tgt
|
248 |
-
q = tgt + ([email protected](-1,-2))
|
249 |
-
|
250 |
-
# print((q@(k.transpose(-1,-2))-query_pos_embed))
|
251 |
-
|
252 |
-
# if attn_mask is not None:
|
253 |
-
# attn_mask = torch.where(
|
254 |
-
# attn_mask.to(torch.bool),
|
255 |
-
# torch.zeros_like(attn_mask),
|
256 |
-
# torch.full_like(attn_mask, float('-inf'), dtype=tgt.dtype))
|
257 |
-
|
258 |
-
# q = k = self.with_pos_embed(tgt, query_pos_embed)
|
259 |
-
tgt2, _ = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
|
260 |
-
tgt = tgt + self.dropout1(tgt2)
|
261 |
-
tgt = self.norm1(tgt)
|
262 |
-
|
263 |
-
# cross attention
|
264 |
-
tgt2 = self.cross_attn(\
|
265 |
-
self.with_pos_embed(tgt, ([email protected](-1,-2))), #self.with_pos_embed(tgt, query_pos_embed),
|
266 |
-
reference_points,
|
267 |
-
memory,
|
268 |
-
memory_spatial_shapes,
|
269 |
-
memory_mask)
|
270 |
-
tgt = tgt + self.dropout2(tgt2)
|
271 |
-
tgt = self.norm2(tgt)
|
272 |
-
|
273 |
-
# ffn
|
274 |
-
tgt2 = self.forward_ffn(tgt)
|
275 |
-
tgt = tgt + self.dropout4(tgt2)
|
276 |
-
tgt = self.norm3(tgt)
|
277 |
-
|
278 |
-
return tgt
|
279 |
-
|
280 |
-
|
281 |
-
class TransformerDecoder(nn.Module):
|
282 |
-
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
|
283 |
-
super(TransformerDecoder, self).__init__()
|
284 |
-
self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)])
|
285 |
-
self.hidden_dim = hidden_dim
|
286 |
-
self.num_layers = num_layers
|
287 |
-
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
288 |
-
|
289 |
-
def forward(self,
|
290 |
-
tgt,
|
291 |
-
ref_points_unact,
|
292 |
-
memory,
|
293 |
-
memory_spatial_shapes,
|
294 |
-
memory_level_start_index,
|
295 |
-
bbox_head,
|
296 |
-
score_head,
|
297 |
-
query_pos_head,
|
298 |
-
attn_mask=None,
|
299 |
-
memory_mask=None):
|
300 |
-
output = tgt
|
301 |
-
dec_out_bboxes = []
|
302 |
-
dec_out_logits = []
|
303 |
-
ref_points_detach = F.sigmoid(ref_points_unact)
|
304 |
-
|
305 |
-
for i, layer in enumerate(self.layers):
|
306 |
-
ref_points_input = ref_points_detach.unsqueeze(2)
|
307 |
-
query_pos_embed = query_pos_head(ref_points_detach)
|
308 |
-
|
309 |
-
output = layer(output, ref_points_input, memory,
|
310 |
-
memory_spatial_shapes, memory_level_start_index,
|
311 |
-
attn_mask, memory_mask, query_pos_embed)
|
312 |
-
|
313 |
-
inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
|
314 |
-
|
315 |
-
if self.training:
|
316 |
-
dec_out_logits.append(score_head[i](output))
|
317 |
-
if i == 0:
|
318 |
-
dec_out_bboxes.append(inter_ref_bbox)
|
319 |
-
else:
|
320 |
-
dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
|
321 |
-
|
322 |
-
elif i == self.eval_idx:
|
323 |
-
dec_out_logits.append(score_head[i](output))
|
324 |
-
dec_out_bboxes.append(inter_ref_bbox)
|
325 |
-
break
|
326 |
-
|
327 |
-
ref_points = inter_ref_bbox
|
328 |
-
ref_points_detach = inter_ref_bbox.detach(
|
329 |
-
) if self.training else inter_ref_bbox
|
330 |
-
|
331 |
-
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
|
332 |
-
|
333 |
-
|
334 |
-
@register
|
335 |
-
class RTDETRTransformer(nn.Module):
|
336 |
-
__share__ = ['num_classes']
|
337 |
-
def __init__(self,
|
338 |
-
num_classes=80,
|
339 |
-
hidden_dim=256,
|
340 |
-
num_queries=300,
|
341 |
-
position_embed_type='sine',
|
342 |
-
feat_channels=[512, 1024, 2048],
|
343 |
-
feat_strides=[8, 16, 32],
|
344 |
-
num_levels=3,
|
345 |
-
num_decoder_points=4,
|
346 |
-
nhead=8,
|
347 |
-
num_decoder_layers=6,
|
348 |
-
dim_feedforward=1024,
|
349 |
-
dropout=0.,
|
350 |
-
activation="relu",
|
351 |
-
num_denoising=100,
|
352 |
-
label_noise_ratio=0.5,
|
353 |
-
box_noise_scale=1.0,
|
354 |
-
learnt_init_query=False,
|
355 |
-
eval_spatial_size=None,
|
356 |
-
eval_idx=-1,
|
357 |
-
eps=1e-2,
|
358 |
-
aux_loss=True):
|
359 |
-
|
360 |
-
super(RTDETRTransformer, self).__init__()
|
361 |
-
assert position_embed_type in ['sine', 'learned'], \
|
362 |
-
f'ValueError: position_embed_type not supported {position_embed_type}!'
|
363 |
-
assert len(feat_channels) <= num_levels
|
364 |
-
assert len(feat_strides) == len(feat_channels)
|
365 |
-
for _ in range(num_levels - len(feat_strides)):
|
366 |
-
feat_strides.append(feat_strides[-1] * 2)
|
367 |
-
|
368 |
-
self.hidden_dim = hidden_dim
|
369 |
-
self.nhead = nhead
|
370 |
-
self.feat_strides = feat_strides
|
371 |
-
self.num_levels = num_levels
|
372 |
-
self.num_classes = num_classes
|
373 |
-
self.num_queries = num_queries
|
374 |
-
self.eps = eps
|
375 |
-
self.num_decoder_layers = num_decoder_layers
|
376 |
-
self.eval_spatial_size = eval_spatial_size
|
377 |
-
self.aux_loss = aux_loss
|
378 |
-
|
379 |
-
# backbone feature projection
|
380 |
-
self._build_input_proj_layer(feat_channels)
|
381 |
-
|
382 |
-
# Transformer module
|
383 |
-
decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels, num_decoder_points)
|
384 |
-
self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers, eval_idx)
|
385 |
-
|
386 |
-
self.num_denoising = num_denoising
|
387 |
-
self.label_noise_ratio = label_noise_ratio
|
388 |
-
self.box_noise_scale = box_noise_scale
|
389 |
-
# denoising part
|
390 |
-
if num_denoising > 0:
|
391 |
-
# self.denoising_class_embed = nn.Embedding(num_classes, hidden_dim, padding_idx=num_classes-1) # TODO for load paddle weights
|
392 |
-
self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes)
|
393 |
-
|
394 |
-
# decoder embedding
|
395 |
-
self.learnt_init_query = learnt_init_query
|
396 |
-
if learnt_init_query:
|
397 |
-
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
|
398 |
-
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)
|
399 |
-
|
400 |
-
# encoder head
|
401 |
-
self.enc_output = nn.Sequential(
|
402 |
-
nn.Linear(hidden_dim, hidden_dim),
|
403 |
-
nn.LayerNorm(hidden_dim,)
|
404 |
-
)
|
405 |
-
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
|
406 |
-
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)
|
407 |
-
|
408 |
-
# decoder head
|
409 |
-
self.dec_score_head = nn.ModuleList([
|
410 |
-
nn.Linear(hidden_dim, num_classes)
|
411 |
-
for _ in range(num_decoder_layers)
|
412 |
-
])
|
413 |
-
self.dec_bbox_head = nn.ModuleList([
|
414 |
-
MLP(hidden_dim, hidden_dim, 4, num_layers=3)
|
415 |
-
for _ in range(num_decoder_layers)
|
416 |
-
])
|
417 |
-
|
418 |
-
# init encoder output anchors and valid_mask
|
419 |
-
if self.eval_spatial_size:
|
420 |
-
self.anchors, self.valid_mask = self._generate_anchors()
|
421 |
-
|
422 |
-
self._reset_parameters()
|
423 |
-
|
424 |
-
def _reset_parameters(self):
|
425 |
-
bias = bias_init_with_prob(0.01)
|
426 |
-
|
427 |
-
init.constant_(self.enc_score_head.bias, bias)
|
428 |
-
init.constant_(self.enc_bbox_head.layers[-1].weight, 0)
|
429 |
-
init.constant_(self.enc_bbox_head.layers[-1].bias, 0)
|
430 |
-
|
431 |
-
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
|
432 |
-
init.constant_(cls_.bias, bias)
|
433 |
-
init.constant_(reg_.layers[-1].weight, 0)
|
434 |
-
init.constant_(reg_.layers[-1].bias, 0)
|
435 |
-
|
436 |
-
# linear_init_(self.enc_output[0])
|
437 |
-
init.xavier_uniform_(self.enc_output[0].weight)
|
438 |
-
if self.learnt_init_query:
|
439 |
-
init.xavier_uniform_(self.tgt_embed.weight)
|
440 |
-
init.xavier_uniform_(self.query_pos_head.layers[0].weight)
|
441 |
-
init.xavier_uniform_(self.query_pos_head.layers[1].weight)
|
442 |
-
|
443 |
-
|
444 |
-
def _build_input_proj_layer(self, feat_channels):
|
445 |
-
self.input_proj = nn.ModuleList()
|
446 |
-
for in_channels in feat_channels:
|
447 |
-
self.input_proj.append(
|
448 |
-
nn.Sequential(OrderedDict([
|
449 |
-
('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)),
|
450 |
-
('norm', nn.BatchNorm2d(self.hidden_dim,))])
|
451 |
-
)
|
452 |
-
)
|
453 |
-
|
454 |
-
in_channels = feat_channels[-1]
|
455 |
-
|
456 |
-
for _ in range(self.num_levels - len(feat_channels)):
|
457 |
-
self.input_proj.append(
|
458 |
-
nn.Sequential(OrderedDict([
|
459 |
-
('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)),
|
460 |
-
('norm', nn.BatchNorm2d(self.hidden_dim))])
|
461 |
-
)
|
462 |
-
)
|
463 |
-
in_channels = self.hidden_dim
|
464 |
-
|
465 |
-
def _get_encoder_input(self, feats):
|
466 |
-
# get projection features
|
467 |
-
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
|
468 |
-
if self.num_levels > len(proj_feats):
|
469 |
-
len_srcs = len(proj_feats)
|
470 |
-
for i in range(len_srcs, self.num_levels):
|
471 |
-
if i == len_srcs:
|
472 |
-
proj_feats.append(self.input_proj[i](feats[-1]))
|
473 |
-
else:
|
474 |
-
proj_feats.append(self.input_proj[i](proj_feats[-1]))
|
475 |
-
|
476 |
-
# get encoder inputs
|
477 |
-
feat_flatten = []
|
478 |
-
spatial_shapes = []
|
479 |
-
level_start_index = [0, ]
|
480 |
-
for i, feat in enumerate(proj_feats):
|
481 |
-
_, _, h, w = feat.shape
|
482 |
-
# [b, c, h, w] -> [b, h*w, c]
|
483 |
-
feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
|
484 |
-
# [num_levels, 2]
|
485 |
-
spatial_shapes.append([h, w])
|
486 |
-
# [l], start index of each level
|
487 |
-
level_start_index.append(h * w + level_start_index[-1])
|
488 |
-
|
489 |
-
# [b, l, c]
|
490 |
-
feat_flatten = torch.concat(feat_flatten, 1)
|
491 |
-
level_start_index.pop()
|
492 |
-
return (feat_flatten, spatial_shapes, level_start_index)
|
493 |
-
|
494 |
-
def _generate_anchors(self,
|
495 |
-
spatial_shapes=None,
|
496 |
-
grid_size=0.05,
|
497 |
-
dtype=torch.float32,
|
498 |
-
device='cpu'):
|
499 |
-
if spatial_shapes is None:
|
500 |
-
spatial_shapes = [[int(self.eval_spatial_size[0] / s), int(self.eval_spatial_size[1] / s)]
|
501 |
-
for s in self.feat_strides
|
502 |
-
]
|
503 |
-
anchors = []
|
504 |
-
for lvl, (h, w) in enumerate(spatial_shapes):
|
505 |
-
grid_y, grid_x = torch.meshgrid(\
|
506 |
-
torch.arange(end=h, dtype=dtype), \
|
507 |
-
torch.arange(end=w, dtype=dtype), indexing='ij')
|
508 |
-
grid_xy = torch.stack([grid_x, grid_y], -1)
|
509 |
-
valid_WH = torch.tensor([w, h]).to(dtype)
|
510 |
-
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
|
511 |
-
wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl)
|
512 |
-
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, h * w, 4))
|
513 |
-
|
514 |
-
anchors = torch.concat(anchors, 1).to(device)
|
515 |
-
valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True)
|
516 |
-
anchors = torch.log(anchors / (1 - anchors))
|
517 |
-
# anchors = torch.where(valid_mask, anchors, float('inf'))
|
518 |
-
# anchors[valid_mask] = torch.inf # valid_mask [1, 8400, 1]
|
519 |
-
anchors = torch.where(valid_mask, anchors, torch.inf)
|
520 |
-
|
521 |
-
return anchors, valid_mask
|
522 |
-
|
523 |
-
|
524 |
-
def _get_decoder_input(self,
|
525 |
-
memory,
|
526 |
-
spatial_shapes,
|
527 |
-
denoising_class=None,
|
528 |
-
denoising_bbox_unact=None):
|
529 |
-
bs, _, _ = memory.shape
|
530 |
-
# prepare input for decoder
|
531 |
-
if self.training or self.eval_spatial_size is None:
|
532 |
-
anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device)
|
533 |
-
else:
|
534 |
-
anchors, valid_mask = self.anchors.to(memory.device), self.valid_mask.to(memory.device)
|
535 |
-
|
536 |
-
# memory = torch.where(valid_mask, memory, 0)
|
537 |
-
memory = valid_mask.to(memory.dtype) * memory # TODO fix type error for onnx export
|
538 |
-
|
539 |
-
output_memory = self.enc_output(memory)
|
540 |
-
|
541 |
-
enc_outputs_class = self.enc_score_head(output_memory)
|
542 |
-
enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors
|
543 |
-
|
544 |
-
_, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.num_queries, dim=1)
|
545 |
-
|
546 |
-
reference_points_unact = enc_outputs_coord_unact.gather(dim=1, \
|
547 |
-
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_unact.shape[-1]))
|
548 |
-
|
549 |
-
enc_topk_bboxes = F.sigmoid(reference_points_unact)
|
550 |
-
if denoising_bbox_unact is not None:
|
551 |
-
reference_points_unact = torch.concat(
|
552 |
-
[denoising_bbox_unact, reference_points_unact], 1)
|
553 |
-
|
554 |
-
enc_topk_logits = enc_outputs_class.gather(dim=1, \
|
555 |
-
index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1]))
|
556 |
-
|
557 |
-
# extract region features
|
558 |
-
if self.learnt_init_query:
|
559 |
-
target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
|
560 |
-
else:
|
561 |
-
target = output_memory.gather(dim=1, \
|
562 |
-
index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
|
563 |
-
target = target.detach()
|
564 |
-
|
565 |
-
if denoising_class is not None:
|
566 |
-
target = torch.concat([denoising_class, target], 1)
|
567 |
-
|
568 |
-
return target, reference_points_unact.detach(), enc_topk_bboxes, enc_topk_logits
|
569 |
-
|
570 |
-
|
571 |
-
def forward(self, feats, targets=None):
|
572 |
-
|
573 |
-
# input projection and embedding
|
574 |
-
(memory, spatial_shapes, level_start_index) = self._get_encoder_input(feats)
|
575 |
-
|
576 |
-
# prepare denoising training
|
577 |
-
if self.training and self.num_denoising > 0:
|
578 |
-
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
|
579 |
-
get_contrastive_denoising_training_group(targets, \
|
580 |
-
self.num_classes,
|
581 |
-
self.num_queries,
|
582 |
-
self.denoising_class_embed,
|
583 |
-
num_denoising=self.num_denoising,
|
584 |
-
label_noise_ratio=self.label_noise_ratio,
|
585 |
-
box_noise_scale=self.box_noise_scale, )
|
586 |
-
else:
|
587 |
-
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None
|
588 |
-
|
589 |
-
target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
|
590 |
-
self._get_decoder_input(memory, spatial_shapes, denoising_class, denoising_bbox_unact)
|
591 |
-
|
592 |
-
# decoder
|
593 |
-
out_bboxes, out_logits = self.decoder(
|
594 |
-
target,
|
595 |
-
init_ref_points_unact,
|
596 |
-
memory,
|
597 |
-
spatial_shapes,
|
598 |
-
level_start_index,
|
599 |
-
self.dec_bbox_head,
|
600 |
-
self.dec_score_head,
|
601 |
-
self.query_pos_head,
|
602 |
-
attn_mask=attn_mask)
|
603 |
-
|
604 |
-
if self.training and dn_meta is not None:
|
605 |
-
dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2)
|
606 |
-
dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2)
|
607 |
-
|
608 |
-
out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]}
|
609 |
-
|
610 |
-
if self.training and self.aux_loss:
|
611 |
-
out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1])
|
612 |
-
out['aux_outputs'].extend(self._set_aux_loss([enc_topk_logits], [enc_topk_bboxes]))
|
613 |
-
|
614 |
-
if self.training and dn_meta is not None:
|
615 |
-
out['dn_aux_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes)
|
616 |
-
out['dn_meta'] = dn_meta
|
617 |
-
|
618 |
-
return out
|
619 |
-
|
620 |
-
|
621 |
-
@torch.jit.unused
|
622 |
-
def _set_aux_loss(self, outputs_class, outputs_coord):
|
623 |
-
# this is a workaround to make torchscript happy, as torchscript
|
624 |
-
# doesn't support dictionary with non-homogeneous values, such
|
625 |
-
# as a dict having both a Tensor and a list.
|
626 |
-
return [{'pred_logits': a, 'pred_boxes': b}
|
627 |
-
for a, b in zip(outputs_class, outputs_coord)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|