cheng-hust's picture
Upload 91 files
e8861c0 verified
"""by lyuwenyu
"""
import torch
from .utils import inverse_sigmoid
from .box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
def get_contrastive_denoising_training_group(targets,
num_classes,
num_queries,
class_embed,
num_denoising=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,):
"""cnd"""
if num_denoising <= 0:
return None, None, None, None
num_gts = [len(t['labels']) for t in targets]
device = targets[0]['labels'].device
max_gt_num = max(num_gts)
if max_gt_num == 0:
return None, None, None, None
num_group = num_denoising // max_gt_num
num_group = 1 if num_group == 0 else num_group
# pad gt to max_num of a batch
bs = len(num_gts)
input_query_class = torch.full([bs, max_gt_num], num_classes, dtype=torch.int32, device=device)
input_query_bbox = torch.zeros([bs, max_gt_num, 4], device=device)
pad_gt_mask = torch.zeros([bs, max_gt_num], dtype=torch.bool, device=device)
for i in range(bs):
num_gt = num_gts[i]
if num_gt > 0:
input_query_class[i, :num_gt] = targets[i]['labels']
input_query_bbox[i, :num_gt] = targets[i]['boxes']
pad_gt_mask[i, :num_gt] = 1
# each group has positive and negative queries.
input_query_class = input_query_class.tile([1, 2 * num_group])
input_query_bbox = input_query_bbox.tile([1, 2 * num_group, 1])
pad_gt_mask = pad_gt_mask.tile([1, 2 * num_group])
# positive and negative mask
negative_gt_mask = torch.zeros([bs, max_gt_num * 2, 1], device=device)
negative_gt_mask[:, max_gt_num:] = 1
negative_gt_mask = negative_gt_mask.tile([1, num_group, 1])
positive_gt_mask = 1 - negative_gt_mask
# contrastive denoising training positive index
positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
dn_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
dn_positive_idx = torch.split(dn_positive_idx, [n * num_group for n in num_gts])
# total denoising queries
num_denoising = int(max_gt_num * 2 * num_group)
if label_noise_ratio > 0:
mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5)
# randomly put a new one here
new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype)
input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class)
# if label_noise_ratio > 0:
# input_query_class = input_query_class.flatten()
# pad_gt_mask = pad_gt_mask.flatten()
# # half of bbox prob
# # mask = torch.rand(input_query_class.shape, device=device) < (label_noise_ratio * 0.5)
# mask = torch.rand_like(input_query_class) < (label_noise_ratio * 0.5)
# chosen_idx = torch.nonzero(mask * pad_gt_mask).squeeze(-1)
# # randomly put a new one here
# new_label = torch.randint_like(chosen_idx, 0, num_classes, dtype=input_query_class.dtype)
# # input_query_class.scatter_(dim=0, index=chosen_idx, value=new_label)
# input_query_class[chosen_idx] = new_label
# input_query_class = input_query_class.reshape(bs, num_denoising)
# pad_gt_mask = pad_gt_mask.reshape(bs, num_denoising)
if box_noise_scale > 0:
known_bbox = box_cxcywh_to_xyxy(input_query_bbox)
diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale
rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
rand_part = torch.rand_like(input_query_bbox)
rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask)
rand_part *= rand_sign
known_bbox += rand_part * diff
known_bbox.clip_(min=0.0, max=1.0)
input_query_bbox = box_xyxy_to_cxcywh(known_bbox)
input_query_bbox = inverse_sigmoid(input_query_bbox)
# class_embed = torch.concat([class_embed, torch.zeros([1, class_embed.shape[-1]], device=device)])
# input_query_class = torch.gather(
# class_embed, input_query_class.flatten(),
# axis=0).reshape(bs, num_denoising, -1)
# input_query_class = class_embed(input_query_class.flatten()).reshape(bs, num_denoising, -1)
input_query_class = class_embed(input_query_class)
tgt_size = num_denoising + num_queries
# attn_mask = torch.ones([tgt_size, tgt_size], device=device) < 0
attn_mask = torch.full([tgt_size, tgt_size], False, dtype=torch.bool, device=device)
# match query cannot see the reconstruction
attn_mask[num_denoising:, :num_denoising] = True
# reconstruct cannot see each other
for i in range(num_group):
if i == 0:
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True
if i == num_group - 1:
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * i * 2] = True
else:
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * 2 * i] = True
dn_meta = {
"dn_positive_idx": dn_positive_idx,
"dn_num_group": num_group,
"dn_num_split": [num_denoising, num_queries]
}
# print(input_query_class.shape) # torch.Size([4, 196, 256])
# print(input_query_bbox.shape) # torch.Size([4, 196, 4])
# print(attn_mask.shape) # torch.Size([496, 496])
return input_query_class, input_query_bbox, attn_mask, dn_meta