|
"""by lyuwenyu |
|
""" |
|
|
|
import torch |
|
|
|
from .utils import inverse_sigmoid |
|
from .box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh |
|
|
|
|
|
|
|
def get_contrastive_denoising_training_group(targets, |
|
num_classes, |
|
num_queries, |
|
class_embed, |
|
num_denoising=100, |
|
label_noise_ratio=0.5, |
|
box_noise_scale=1.0,): |
|
"""cnd""" |
|
if num_denoising <= 0: |
|
return None, None, None, None |
|
|
|
num_gts = [len(t['labels']) for t in targets] |
|
device = targets[0]['labels'].device |
|
|
|
max_gt_num = max(num_gts) |
|
if max_gt_num == 0: |
|
return None, None, None, None |
|
|
|
num_group = num_denoising // max_gt_num |
|
num_group = 1 if num_group == 0 else num_group |
|
|
|
bs = len(num_gts) |
|
|
|
input_query_class = torch.full([bs, max_gt_num], num_classes, dtype=torch.int32, device=device) |
|
input_query_bbox = torch.zeros([bs, max_gt_num, 4], device=device) |
|
pad_gt_mask = torch.zeros([bs, max_gt_num], dtype=torch.bool, device=device) |
|
|
|
for i in range(bs): |
|
num_gt = num_gts[i] |
|
if num_gt > 0: |
|
input_query_class[i, :num_gt] = targets[i]['labels'] |
|
input_query_bbox[i, :num_gt] = targets[i]['boxes'] |
|
pad_gt_mask[i, :num_gt] = 1 |
|
|
|
input_query_class = input_query_class.tile([1, 2 * num_group]) |
|
input_query_bbox = input_query_bbox.tile([1, 2 * num_group, 1]) |
|
pad_gt_mask = pad_gt_mask.tile([1, 2 * num_group]) |
|
|
|
negative_gt_mask = torch.zeros([bs, max_gt_num * 2, 1], device=device) |
|
negative_gt_mask[:, max_gt_num:] = 1 |
|
negative_gt_mask = negative_gt_mask.tile([1, num_group, 1]) |
|
positive_gt_mask = 1 - negative_gt_mask |
|
|
|
positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask |
|
dn_positive_idx = torch.nonzero(positive_gt_mask)[:, 1] |
|
dn_positive_idx = torch.split(dn_positive_idx, [n * num_group for n in num_gts]) |
|
|
|
num_denoising = int(max_gt_num * 2 * num_group) |
|
|
|
if label_noise_ratio > 0: |
|
mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5) |
|
|
|
new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype) |
|
input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if box_noise_scale > 0: |
|
known_bbox = box_cxcywh_to_xyxy(input_query_bbox) |
|
diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale |
|
rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0 |
|
rand_part = torch.rand_like(input_query_bbox) |
|
rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask) |
|
rand_part *= rand_sign |
|
known_bbox += rand_part * diff |
|
known_bbox.clip_(min=0.0, max=1.0) |
|
input_query_bbox = box_xyxy_to_cxcywh(known_bbox) |
|
input_query_bbox = inverse_sigmoid(input_query_bbox) |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_query_class = class_embed(input_query_class) |
|
|
|
tgt_size = num_denoising + num_queries |
|
|
|
attn_mask = torch.full([tgt_size, tgt_size], False, dtype=torch.bool, device=device) |
|
|
|
attn_mask[num_denoising:, :num_denoising] = True |
|
|
|
|
|
for i in range(num_group): |
|
if i == 0: |
|
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True |
|
if i == num_group - 1: |
|
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * i * 2] = True |
|
else: |
|
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True |
|
attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * 2 * i] = True |
|
|
|
dn_meta = { |
|
"dn_positive_idx": dn_positive_idx, |
|
"dn_num_group": num_group, |
|
"dn_num_split": [num_denoising, num_queries] |
|
} |
|
|
|
|
|
|
|
|
|
|
|
return input_query_class, input_query_bbox, attn_mask, dn_meta |
|
|