cheng-hust's picture
Update app.py
1ff6303 verified
import gradio as gr
import torch.nn as nn
import torch
from src.core.config import BaseConfig
from src.core.yaml_utils import load_config, merge_config, create, merge_dict
import cv2
import torchvision.transforms as transforms
from PIL import Image, ImageDraw
from src.core import YAMLConfig
from pathlib import Path
import src
transformer = transforms.Compose([
transforms.ToTensor(),
#transforms.Resize([640,640]),
])
#def model(yaml_cfg) -> torch.nn.Module:
# if 'model' in yaml_cfg:
# merge_config(yaml_cfg)
# model = create(yaml_cfg['model'])
# return model
#
#
#
#def get_model(cfg_path='./configs/rtdetr/rtdetr_r101vd_6x_coco.yml',ckpt="./logs/checkpointcope12.pth"):
# yaml_cfg = load_config(cfg_path)
# merge_dict(yaml_cfg, {})
# tmodel = model(yaml_cfg)
# checkpoint = torch.load(ckpt, map_location='cpu')
# if 'ema' in checkpoint:
# state = checkpoint['ema']['module']
# else:
# state = checkpoint['model']
#
# tmodel.load_state_dict(state)
# return tmodel
class Model(nn.Module):
def __init__(self, confg=None, ckpt="",cope=True) -> None:
super().__init__()
self.cfg = src.core.YAMLConfig(confg, resume=ckpt)
if ckpt:
checkpoint = torch.load(ckpt, map_location='cpu')
if 'ema' in checkpoint:
state = checkpoint['ema']['module']
else:
state = checkpoint['model']
else:
raise AttributeError('only support resume to load model.state_dict by now.')
# NOTE load train mode state -> convert to deploy mode
self.cfg.model.load_state_dict(state)
self.model = self.cfg.model.deploy()
self.postprocessor = self.cfg.postprocessor.deploy()
# print(self.postprocessor.deploy_mode)
def forward(self, images, orig_target_sizes):
outputs = self.model(images)
return self.postprocessor(outputs, orig_target_sizes)
model = Model(confg='./configs/rtdetr/rtdetr_r101vd_6x_coco.yml',ckpt="./checkpoint_init.pth")
model2 = Model(confg='./configs/rtdetr/rtdetr_r101vd_6x_cococope12.yml',ckpt="./checkpointcope12.pth",cope=False)
model3 = Model(confg='./configs/rtdetr/rtdetr_r101vd_6x_cocococo.yml',ckpt="./rtdetrCOCO.pth",cope=False)
#img = cv2.imread('./j.jpg',cv2.IMREAD_GRAYSCALE)
#img = Image.open('./a.jpg').convert('RGB').resize((640,640))
def detect(img,thr=0.2,trained_dataset='aitod'):
#print(img) #ndarray
img = Image.fromarray(img).resize((640,640))
t_img = transformer(img).unsqueeze(0)#.unsqueeze(0) #[1,1,640,640]
size = torch.tensor([[t_img.shape[2], t_img.shape[3]]])
#print(t_img.shape)
if trained_dataset == 'aitod':
labels, boxes, scores=model(t_img,size)
elif trained_dataset == 'ten_classes':
labels, boxes, scores=model2(t_img,size)
else:
labels, boxes, scores=model3(t_img,size)
#img_path = Path('./a.jpg')
draw = ImageDraw.Draw(img)
thrh = thr
for i in range(t_img.shape[0]):
scr = scores[i]
lab = labels[i][scr > thrh]
box = boxes[i][scr > thrh]
label_dict = {8:'wind-mill',7:'person',6:'vehicle',5:'swimming-pool',4:'ship',3:'storage-tank',2:'bridge',1:'airplane'} #AITOD labels
coco_dict = {1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck',
9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench',
16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra',
25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee',
35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove',
41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup',
48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange',
56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch',
64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse',
75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink',
82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier',
90: 'toothbrush'} #coco
label_color_dict = {8:'burlyWood',7:'red',6:'blue',5:'green',4:'yellow',3:'cyan',2:'magenta',1:'orange'}
if trained_dataset != 'COCO':
for idx,b in enumerate(box):
label_i = lab[idx].item()
draw.rectangle(list(b), outline=label_color_dict[label_i], )
draw.text((b[0], b[1]), text=label_dict[label_i], fill='blue', )
else:
for idx,b in enumerate(box):
label_i = lab[idx].item()
draw.rectangle(list(b), outline=label_color_dict[label_i%8+1], )
draw.text((b[0], b[1]), text=coco_dict[label_i+1], fill='blue', )
#save_path = Path('./output') / img_path.name
return img
interface = gr.Interface(fn=detect,inputs=["image",gr.Slider(label="thr", value=0.2, maximum=1, minimum=0),gr.Radio(['aitod','ten_classes','COCO'],value='aitod')],outputs="image",title="degraded hust small object detect")
interface.launch()